Skip to main content
Log in

Relative asynchronous index: a new measure for time series irreversibility

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we suggest a new measure for testing reversibility of time series which combines two different tools: the visibility algorithm and the inversion number. First, the visibility algorithm maps the time series to the network according to a geometric criterion. After that, the degree of irreversibility of the time series can be estimated by the relative asynchronous index (RAI), based on the inverse number, between out and \(\hbox {out}^*\) degree sequences of the network (out and \(\hbox {out}^*\) represent the outgoing sequence of forward time series and reverse time series, respectively). This method does not need to rely on additional parameters, so it can avoid the error caused by parameter estimation. In addition, we also study the multiscale RAI and find that the optimal scale selection for detection time irreversibility is 1–4. Different types of time series are used to confirm the validity of this metric. Finally, we apply the method to financial time series and find that the financial crisis can be detected by RAI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hamilton, J.D.: Time Series Analysis, vol. 2. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  2. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427–431 (1979)

    MathSciNet  MATH  Google Scholar 

  3. Priestley, M.B.: Spectral analysis and time series. J. Am. Stat. Assoc. 79, 385 (1981)

  4. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  5. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. EPL (Europhys. Lett.) 4, 973 (1987)

    Article  Google Scholar 

  6. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461 (2000)

    Article  Google Scholar 

  7. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)

    Article  Google Scholar 

  8. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  Google Scholar 

  9. Gao, Z.K., Yang, Y.X., Fang, P.C., Zou, Y., Xia, C.Y., Du, M.: Multiscale complex network for analyzing experimental multivariate time series. EPL (Europhys. Lett.) 109, 30005 (2015)

    Article  Google Scholar 

  10. Gao, Z.K., Zhang, S.S., Dang, W.D., Li, S., Cai, Q.: Multilayer network from multivariate time series for characterizing nonlinear flow behavior. Int. J. Bifurc. Chaos 27, 1750059 (2017)

    Article  Google Scholar 

  11. Lobier, M., Siebenhühner, F., Palva, S., Palva, J.M.: Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage 85, 853–872 (2014)

    Article  Google Scholar 

  12. Yang, P., Shang, P.: Recurrence quantity analysis based on matrix eigenvalues. Commun. Nonlinear Sci. Numer. Simul. 59, 15–29 (2018)

    Article  MathSciNet  Google Scholar 

  13. Diks, C., Van Houwelingen, J., Takens, F., DeGoede, J.: Reversibility as a criterion for discriminating time series. Phys. Lett. A 201, 221–228 (1995)

    Article  Google Scholar 

  14. Van der Heyden, M., Diks, C., Pijn, J., Velis, D.: Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy. Phys. Lett. A 216, 283–288 (1996)

    Article  Google Scholar 

  15. Yang, A.C.C., Hseu, S.S., Yien, H.W., Goldberger, A.L., Peng, C.K.: Linguistic analysis of the human heartbeat using frequency and rank order statistics. Phys. Rev. Lett. 90, 108103 (2003)

    Article  Google Scholar 

  16. Costa, M., Goldberger, A.L., Peng, C.K.: Broken asymmetry of the human heartbeat: loss of time irreversibility in aging and disease. Phys. Rev. Lett. 95, 198102 (2005)

    Article  Google Scholar 

  17. Costa, M.D., Peng, C.K., Goldberger, A.L.: Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures. Cardiovasc. Eng. 8, 88–93 (2008)

    Article  Google Scholar 

  18. Cammarota, C., Rogora, E.: Time reversal, symbolic series and irreversibility of human heartbeat. Chaos Solitons Fract. 32, 1649–1654 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Broder, G., Weil, M.H.: Excess lactate: an index of reversibility of shock in human patients. Science 143, 1457–1459 (1964)

    Article  Google Scholar 

  20. Weiss, G.: Time-reversibility of linear stochastic processes. J. Appl. Probab. 12, 831–836 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, Q.: On time-reversibility of linear processes. Biometrika 86, 483–486 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hinich, M.J.: Testing for Gaussianity and linearity of a stationary time series. J. Time Ser. Anal. 3, 169–176 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sharifdoust, M., Mahmoodi, S.: On time reversibility of linear time series. J. Math. Ext. 6, 33–47 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Kawai, R., Parrondo, J., Van den Broeck, C.: Dissipation: the phase-space perspective. Phys. Rev. Lett. 98, 080602 (2007)

    Article  Google Scholar 

  25. Parrondo, J.M., Van den Broeck, C., Kawai, R.: Entropy production and the arrow of time. New J. Phys. 11, 073008 (2009)

    Article  Google Scholar 

  26. Chen, Y.T., Chou, R.Y., Kuan, C.M.: Testing time reversibility without moment restrictions. J. Econom. 95, 199–218 (2000)

    Article  MATH  Google Scholar 

  27. Tong, H.: Non-linear Time Series: A Dynamical System Approach. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  28. Granger, C.W., Terasvirta, T., et al.: Modelling non-linear economic relationships. OUP Catalogue (1993)

  29. Cox, D.R.: Long-range dependence, non-linearity and time irreversibility. J. Time Ser. Anal. 12, 329–335 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roldán, É., Parrondo, J.M.: Estimating dissipation from single stationary trajectories. Phys. Rev. Lett. 105, 150607 (2010)

    Article  Google Scholar 

  31. Roldán, É., Parrondo, J.M.: Entropy production and Kullback–Leibler divergence between stationary trajectories of discrete systems. Phys. Rev. E 85, 031129 (2012)

    Article  Google Scholar 

  32. Lin, A., Liu, K.K., Bartsch, R.P., Ivanov, P.C.: Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions. Philos. Trans. R. Soc. A 374, 20150182 (2016)

    Article  Google Scholar 

  33. Daw, C., Finney, C., Kennel, M.: Symbolic approach for measuring temporal irreversibility. Phys. Rev. E 62, 1912 (2000)

    Article  Google Scholar 

  34. Kennel, M.B.: Testing time symmetry in time series using data compression dictionaries. Phys. Rev. E 69, 056208 (2004)

    Article  Google Scholar 

  35. Gaspard, P.: Time-reversed dynamical entropy and irreversibility in Markovian random processes. J. Stat. Phys. 117, 599–615 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Andrieux, D., Gaspard, P., Ciliberto, S., Garnier, N., Joubaud, S., Petrosyan, A.: Entropy production and time asymmetry in nonequilibrium fluctuations. Phys. Rev. Lett. 98, 150601 (2007)

    Article  Google Scholar 

  37. Wang, Q., Kulkarni, S.R., Verdú, S.: Divergence estimation of continuous distributions based on data-dependent partitions. IEEE Trans. Inf. Theory 51, 3064–3074 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Thomas, J.A., Cover, T.M.: Elements of information theory. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  39. Luque, B., Lacasa, L., Ballesteros, F., Luque, J.: Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80, 046103 (2009)

    Article  Google Scholar 

  40. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. 105, 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lacasa, L., Luque, B., Luque, J., Nuno, J.C.: The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion. EPL (Europhys. Lett.) 86, 30001 (2009)

    Article  Google Scholar 

  42. Lacasa, L., Toral, R.: Description of stochastic and chaotic series using visibility graphs. Phys. Rev. E 82, 036120 (2010)

    Article  Google Scholar 

  43. Casali, K.R., Casali, A.G., Montano, N., Irigoyen, M.C., Macagnan, F., Guzzetti, S., Porta, A.: Multiple testing strategy for the detection of temporal irreversibility in stationary time series. Phys. Rev. E 77, 066204 (2008)

    Article  Google Scholar 

  44. Lacasa, L., Nunez, A., Roldán, É., Parrondo, J.M., Luque, B.: Time series irreversibility: a visibility graph approach. Eur. Phys. J. B 85, 1–11 (2012)

    Article  Google Scholar 

  45. Flanagan, R., Lacasa, L.: Irreversibility of financial time series: a graph-theoretical approach. Phys. Lett. A 380, 1689–1697 (2016)

    Article  Google Scholar 

  46. Weisenfeld, N.L., Warfteld, S.: Normalization of joint image-intensity statistics in MRI using the Kullback-Leibler divergence. In: Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on, pp. 101–104. IEEE (2004)

  47. Hershey, J.R., Olsen, P.A.: Approximating the Kullback–Leibler divergence between Gaussian mixture models. In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 4, pp. IV–317. IEEE (2007)

  48. Gao, Z.K., Cai, Q., Yang, Y.X., Dong, N., Zhang, S.S.: Visibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEG. Int. J. Neural Syst. 27, 1750005 (2017)

    Article  Google Scholar 

  49. Costa, M., Peng, C.K., Goldberger, A.L., Hausdorff, J.M.: Multiscale entropy analysis of human gait dynamics. Physica A 330, 53–60 (2003)

    Article  MATH  Google Scholar 

  50. Liu, Q., Wei, Q., Fan, S.Z., Lu, C.W., Lin, T.Y., Abbod, M.F., Shieh, J.S.: Adaptive computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia during surgery. Entropy 14, 978–992 (2012)

    Article  MATH  Google Scholar 

  51. Yin, Y., Shang, P., Feng, G.: Modified multiscale cross-sample entropy for complex time series. Appl. Math. Comput. 289, 98–110 (2016)

    MathSciNet  Google Scholar 

  52. Wu, S.D., Wu, C.W., Lin, S.G., Wang, C.C., Lee, K.Y.: Time series analysis using composite multiscale entropy. Entropy 15, 1069–1084 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sprott, J.C., Rowlands, G.: Improved correlation dimension calculation. Int. J. Bifurc. Chaos 11, 1865–1880 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ivanov, P.C., Liu, K.K., Bartsch, R.P.: Focus on the emerging new fields of network physiology and network medicine. New J. Phys. 18, 100201 (2016)

    Article  Google Scholar 

  55. Bartsch, R.P., Liu, K.K., Bashan, A., Ivanov, P.C.: Network physiology: how organ systems dynamically interact. PLoS ONE 10, e0142143 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the Funds of the China National Science (61771035) and the Beijing National Science (4162047) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengjian Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Shang, P. Relative asynchronous index: a new measure for time series irreversibility. Nonlinear Dyn 93, 1545–1557 (2018). https://doi.org/10.1007/s11071-018-4275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4275-1

Keywords

Navigation