Robust predictive scheme for input delay systems subject to nonlinear disturbances

  • Shang Shi
  • Shengyuan Xu
  • Yongmin Li
  • Yuming Chu
  • Zhengqiang Zhang
Original Paper
  • 24 Downloads

Abstract

The predictor-based control is known as an effective method to compensate input delays. Yet the traditional predictors, like Smith predictor, have poor robustness with respect to system disturbances. In this paper, with the consideration of future disturbances, a novel robust predictive scheme is developed for input delay systems subject to nonlinear disturbances. The Artstein reduction method is used to provide performance analysis of different predictor-based controllers, which shows that the proposed predictor-based controller can provide better disturbance attenuation than previous approaches in the literature for a wide range of disturbances.

Keywords

Input delay Nonlinear disturbances Predictor Robust control 

Notes

Acknowledgements

This work was supported in part by the NSFC 61673215, 61673169, 61374087, 61773191 the Natural Science Foundation of Jiangsu Province under Grant BK20140770, the Fundamental Research Funds for the Central Universities 30916015105, the 333 Project (BRA2017380), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13072), PAPD, the Key Laboratory of Jiangsu Province, Shandong Provincial Natural Science Foundation for Distinguished Young Scholars under Grant JQ201515 and the Taishan Scholarship Project of Shandong Province.

References

  1. 1.
    Wang, H., Wang, X., Zhu, X.J., Wang, X.H.: Linear feedback controller design method for time-delay chaotic systems. Nonlinear Dyn. 70, 355–362 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Wen, S., Zeng, Z., Huang, T.: Observer-based synchronization of memristive systems with multiple networked input and output delays. Nonlinear Dyn. 78(1), 541–554 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Park, J.H., Kwon, O.M.: A novel criterion for delayed feedback control of time-delay chaotic systems. Chaos Solitons Fractals 23(2), 495–501 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Park, J.H., Kwon, O.M.: Guaranteed cost control of time-delay chaotic systems. Chaos Solitons Fractals 27(4), 1011–1018 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Liu, G., Xu, S., Wei, Y., Qi, Z., Zhang, Z.: New insight into reachable set estimation for uncertain singular time-delay systems. Appl. Math. Comput. 320, 769–780 (2018)MathSciNetGoogle Scholar
  6. 6.
    Feng, H., Xu, H., Xu, S., Chen, W.: Distributed control design for spatially interconnected markovian jump systems with timevarying delays. Asian J. Control, 1–10 (2018)Google Scholar
  7. 7.
    Zhou, Y., Wang, Z.: Robust motion control of a two-wheeled inverted pendulum with an input delay based on optimal integral sliding mode manifold. Nonlinear Dyn. 85(3), 2065–2074 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, W., Lim, C., Shi, P., Xu, S.: Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantization. Int. J. Control 90(11), 2433–2448 (2016)CrossRefMATHGoogle Scholar
  9. 9.
    Smith, O.J.M.: Closer control of loops with dead time. Chem. Eng. Prog. 53(5), 217–219 (1957)Google Scholar
  10. 10.
    Manitius, A., Olbrot, A.W.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Autom. Control 24(4), 541–552 (1979)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kwon, W.H., Pearson, A.E.: Feedback stabilization of linear systems with delayed control. IEEE Trans. Autom. Control 25(2), 266–269 (1980)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Artstein, Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Autom. Control 27(4), 869–879 (1982)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Loreto, M.D., Lafay, J.F., Loiseau, J.J.: On the disturbance attenuation for input delay systems. IFAC Proc. Vol. 38(1), 460–465 (2005)CrossRefGoogle Scholar
  14. 14.
    Loreto, M.D., Loiseau, J.J., Lafay, J.F.: Disturbance attenuation by dynamic output feedback for input-delay systems. Automatica 44(8), 2202–2206 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Krstic, M.: Lyapunov tools for predictor feedbacks for delay systems: inverse optimality and robustness to delay mismatch. Automatica 44(11), 2930–2935 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bresch-Pietri, D., Chauvin, J., Petit, N.: Adaptive control scheme for uncertain time-delay systems. Automatica 48(8), 1536–1552 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Pyrkin, A.A., Bobtsov, A.A.: Adaptive controller for linear system with input delay and output disturbance. IEEE Trans. Autom. Control 61(12), 4229–4234 (2016)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Roh, Y.H., Oh, J.H.: Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation. Automatica 35(11), 1861–1865 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Han, X., Fridman, E., Spurgeon, S.K.: Sliding mode control in the presence of input delay: a singular perturbation approach. Automatica 48(8), 1904–1912 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., Chriette, A.: New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica 52, 179–184 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sanz, R., Garcia, P., Albertos, P.: Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica 72, 205–208 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Furtat, I., Fridman, E., Fradkov, A.: Disturbance compensation with finite spectrum assignment for plants with input delay. IEEE Trans. Autom. Control 63(1), 298–305 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shi, S., Liu, W., Lu, J., Chu, Y.: Improved disturbance rejection for predictor-based control of MIMO linear systems with input delay. Int. J. Syst. Sci. 49(3), 653–661 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Johnson, C.D.: Further study of the linear regulator with disturbances-The case of vector disturbances satisfying a linear differential equation. IEEE Trans. Autom. Control 15(2), 222–228 (1970)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Isidori, A.: Nonlinear Control Systems: An Introduction, 3rd edn. Springer, Berlin (1995)CrossRefMATHGoogle Scholar
  26. 26.
    Guo, L., Chen, W.H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15(3), 109–125 (2005)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Chen, W.H., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods—An overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)CrossRefGoogle Scholar
  28. 28.
    Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Levant, A.: Globally convergent fast exact differentiator with variable gains. In: Proceedings of the European Control Conference (2014)Google Scholar
  30. 30.
    Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: Proceedings of the 47th IEEE Conference on Decision and Control (2008)Google Scholar
  31. 31.
    Gonzalez, T., Moreno, J., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control 57(8), 2100–2105 (2012)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, New Jersey (1996)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingChina
  2. 2.School of ScienceHuzhou Teachers CollegeHuzhouChina
  3. 3.School of Electrical Engineering and AutomationQufu Normal UniversityRizhaoChina

Personalised recommendations