Chaos control of an SMA–pendulum system using thermal actuation with extended time-delayed feedback approach

Original Paper
  • 58 Downloads

Abstract

Chaos control has been applied to a variety of systems exploiting system dynamics characteristics that present advantages of low energy consumption when compared with regular controllers. This work deals with the chaos control of a smart system composed of a pendulum coupled with shape memory alloy (SMA) elements. SMAs belong to smart material class being employed in several applications due to their adaptive behavior. The basic idea is to apply the extended time-delayed feedback control on an SMA–pendulum system by exploring the SMA temperature-dependent behavior. Actuation constraints are considered based on heat transfer equations. Controller parameters are estimated using Floquet theory employed to analyze controlled unstable periodic orbits (UPOs). Results show the capability of the thermal controller to perform UPO stabilization. Energy consumption and stabilization time are discussed establishing a comparison with an ideal controller, without heat transfer constraints.

Keywords

Nonlinear dynamics Chaos Shape memory alloys Pendulum Control 

Notes

Acknowledgements

The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq, CAPES and FAPERJ. The Air Force Office of Scientific Research (AFOSR) is also acknowledged.

References

  1. 1.
    Schikora, S., Wünsche, H.-J., Henneberger, F.: All-optical noninvasive chaos control of a semiconductor laser. Phys. Rev. E 78(2), 025202 (2008)CrossRefMATHGoogle Scholar
  2. 2.
    VanWiggeren, G.D., Roy, R.: Communication with Chaotic lasers. Science 279(5354), 1198–1200 (1998)CrossRefGoogle Scholar
  3. 3.
    de Paula, A.S., Savi, M.A.: Comparative analysis of chaos control methods: a mechanical system case study. Int. J. Non-Linear Mech. 46(8), 1076–1089 (2011)CrossRefGoogle Scholar
  4. 4.
    de Paula, A.S., dos Santos, M.V.S., Savi, M.A., Bessa, W.M.: Controlling a shape memory alloy two-bar truss using delayed feedback method. Int. J. Struct. Stab. Dyn. 14(08), 1440032 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Barbosa, W.O.V., De Paula, A.S., Savi, M.A., Inman, D.J.: Chaos control applied to piezoelectric vibration-based energy harvesting systems. Eur. Phys. J. Spec. Top. 224(14–15), 2787–2801 (2015)CrossRefGoogle Scholar
  6. 6.
    Fradkov, A.L., Evans, R.J.: Control of chaos: methods and applications in engineering. Annu. Rev. Control 29(1), 33–56 (2005)CrossRefGoogle Scholar
  7. 7.
    Savi, M.A.: Nonlinear dynamics and chaos in shape memory alloy systems. Int. J. Non-Linear Mech. 70, 2–19 (2015)CrossRefGoogle Scholar
  8. 8.
    Bessa, W.M., de Paula, A.S., Savi, M.A.: Adaptive fuzzy sliding mode control of smart structures. Eur. Phys. J. Spec. Top. 222(7), 1541–1551 (2013)CrossRefGoogle Scholar
  9. 9.
    Kuribayash, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., Sasaki, M.: Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419(1–2), 131–137 (2006)CrossRefGoogle Scholar
  10. 10.
    Kim, B., Lee, M.G., Lee, Y.P., Kim, Y., Lee, G.: An earthworm-like micro robot using shape memory alloy actuator. Sens. Actuators Phys. 125(2), 429–437 (2006)CrossRefGoogle Scholar
  11. 11.
    Lebedev, G.A., Gusarov, B.V., Viala, B., Delamare, J., Cugat, O., Lafont, T., Zakharov, D.I.: Thermal energy harvesting using shape memory/piezoelectric composites. In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, pp. 669–670 (2011)Google Scholar
  12. 12.
    Silva, L.L., Oliveira, S.A., et al.: Synergistic use of smart materials for vibration-based energy harvesting. Eur. Phys. J. Spec. Top. 224(14–15), 3005–3021 (2015)CrossRefGoogle Scholar
  13. 13.
    Piccirillo, V., Balthazar, J.M., Pontes Jr., B.R., Felix, J.L.P.: Chaos control of a nonlinear oscillator with shape memory alloy using an optimal linear control: part I: ideal energy source. Nonlinear Dyn. 55(1–2), 139–149 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Jayender, J., Patel, R.V., Nikumb, S., Ostojic, M.: Modeling and control of shape memory alloy actuators. IEEE Trans. Control Syst. Technol. 16(2), 279–287 (2008)CrossRefGoogle Scholar
  15. 15.
    Majima, S., Kodama, K., Hasegawa, T.: Modeling of shape memory alloy actuator and tracking control system with the model. IEEE Trans. Control Syst. Technol. 9(1), 54–59 (2001)CrossRefGoogle Scholar
  16. 16.
    Villanueva, A., Smith, C., Priya, S.: A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir. Biomim. 6(3), 036004 (2011)CrossRefGoogle Scholar
  17. 17.
    Costa, D.D.A., Savi, M.A.: Nonlinear dynamics of an SMA-pendulum system. Nonlinear Dyn. 87(3), 1617–1627 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Phys. Rep. 329(3), 103–197 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Socolar, J.E.S., Sukow, D.W., Gauthier, D.J.: Stabilizing unstable periodic orbits in fast dynamical systems. Phys. Rev. E 50(4), 3245–3248 (1994)CrossRefGoogle Scholar
  20. 20.
    Pyragas, K.: Delayed feedback control of chaos. Philos. Trans. R. Soc. 364, 2309–2334 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Pyragas, K., Tamaševičius, A.: Experimental control of chaos by delayed self-controlling feedback. Phys. Lett. A 180(1), 99–102 (1993)CrossRefGoogle Scholar
  22. 22.
    Kittel, A., Parisi, J., Pyragas, K.: Delayed feedback control of chaos by self-adapted delay time. Phys. Lett. A 198, 433–436 (1995)CrossRefGoogle Scholar
  23. 23.
    Christini, D.J., Collins, J.J., Linsay, P.S.: Experimental control of high-dimensional chaos: the driven double pendulum. Phys. Rev. E 54(5), 4824–4827 (1996)CrossRefGoogle Scholar
  24. 24.
    de Paula, A.S., Savi, M.A.: Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method. Chaos Solitons Fractals 42(5), 2981–2988 (2009)CrossRefMATHGoogle Scholar
  25. 25.
    Just, W., Bernard, T., Ostheimer, M., Reibold, E., Benner, H.: Mechanism of time-delayed feedback control. Phys. Rev. Lett. 78(2), 203 (1997)CrossRefGoogle Scholar
  26. 26.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    de Paula, A.S., Savi, M.A., Pereira-Pinto, F.H.I.: Chaos and transient chaos in an experimental nonlinear pendulum. J. Sound Vib. 294(3), 585–595 (2006)CrossRefGoogle Scholar
  28. 28.
    Aguiar, R.A.A., Savi, M.A., Pacheco, P.M.C.L.: Experimental and numerical investigations of shape memory alloy helical springs. Smart Mater. Struct. 19(2), 025008 (2010)CrossRefGoogle Scholar
  29. 29.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Auerbach, D., Cvitanović, P., Eckmann, J.-P., Gunaratne, G., Procaccia, I.: Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58(23), 2387 (1987)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pyragas, K., Pyragas, V.: Using ergodicity of chaotic systems for improving the global properties of the delayed feedback control method. Phys. Rev. E 80(6), 067201 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Nonlinear Mechanics, COPPE – Department of Mechanical EngineeringUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations