Nonlinear Dynamics

, Volume 93, Issue 2, pp 557–569 | Cite as

Super-twisting algorithm with time delay estimation for uncertain robot manipulators

  • Yassine Kali
  • Maarouf Saad
  • Khalid Benjelloun
  • Charles Khairallah
Original Paper


This paper proposes a super-twisting algorithm (STA) with time delay estimation (TDE) for the problem of high-accuracy tracking trajectory of robotic manipulators in the presence of uncertainties and unexpected disturbances. The TDE method is known for it capability to estimate uncertainties simply without an exact knowledge of the system dynamics. Using the estimated uncertainties, the control law is then designed based on STA to ensure robustness, finite-time convergence and chattering reduction. The stability analysis of the closed-loop system and the finite-time convergence are proved using Lyapunov theory. In order to show the effectiveness of the proposed method, simulations and experimental results were carried out on a 2-DOF rigid robot manipulator and on the 7-DOF ANAT robot arm, respectively.


Super-twisting algorithm Time delay estimation Lyapunov Uncertain robot Tracking trajectory 


  1. 1.
    Bartolini, G., Pisano, A., Punta, E., Usai, E.: A survey of applications of second-order sliding mode control to mechanical systems. Int. J. Control 76(9–10), 875–892 (2003). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boiko, I., Fridman, L.: Analysis of chattering in continuous sliding-mode controllers. IEEE Trans. Autom. Control 50, 1442–1446 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boubakir, A., Boudjema, F., Labiod, S.: A neuro-fuzzy-sliding mode controller using nonlinear sliding surface applied to the coupled tanks system. Int. J. Autom. Comput. 6(1), 72–80 (2009). CrossRefGoogle Scholar
  4. 4.
    Cao, Y., Chen, X.B.: Disturbance-observer-based sliding-mode control for a 3-dof nanopositioning stage. IEEE/ASME Trans. Mechatron. 19(3), 924–931 (2014). CrossRefGoogle Scholar
  5. 5.
    Cho, S.J., Jin, M., Kuc, T.Y., Lee, J.S.: Control and synchronization of chaos systems using time-delay estimation and supervising switching control. Nonlinear Dyn. 75(3), 549–560 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cho, S.J., Lee, J.S., Kim, J., Kuc, T.Y., Chang, P.H., Jin, M.: Adaptive time-delay control with a supervising switching technique for robot manipulators. Trans. Inst. Meas. Control (2016). Google Scholar
  7. 7.
    Craig, J.J.: Introduction to Robotics : Mechanics and Control, 3rd edn. Pearson, London (2005)Google Scholar
  8. 8.
    Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn. (2016). MathSciNetzbMATHGoogle Scholar
  9. 9.
    Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fridman, L.: An averaging approach to chattering. IEEE Trans. Autom. Control 46, 1260–1265 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fridman, L., Levant, A.: Higher order sliding modes. In: Perruquetti, W., Barbot, J.P. (eds.) Sliding Mode Control In Engineering, pp. 53–102. Marcel Dekker, New York (2002)Google Scholar
  12. 12.
    Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control 57(8), 2100–2105 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guo, J., Luo, Y., Li, K.: Adaptive neural-network sliding mode cascade architecture of longitudinal tracking control for unmanned vehicles. Nonlinear Dyn. (2017). zbMATHGoogle Scholar
  14. 14.
    Guzmán, E., Moreno, J.A.: Super-twisting observer for second-order systems with time-varying coefficient. IET Control Theory Appl. 9(4), 553–562 (2015). MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hsia, T., Gao, L.: Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. IEEE Int. Conf. Robot. Autom. 3, 2070–2075 (1990)CrossRefGoogle Scholar
  16. 16.
    Jin, M., Kang, S.H., Chang, P.H.: Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Trans. Ind. Electron. 55(1), 258–269 (2008). CrossRefGoogle Scholar
  17. 17.
    Joe, H., Kim, M., Yu, S.C.: Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn. (2014). Google Scholar
  18. 18.
    Kali, Y., Saad, M., Benjelloun, K., Benbrahim, M.: Sliding mode with time delay control for mimo nonlinear systems with unknown dynamics. In: International Workshop on Recent Advances in Sliding Modes, April 9–11. Istanbul, Turkey (2015)Google Scholar
  19. 19.
    Kali, Y., Saad, M., Benjelloun, K., Benbrahim, M.: Sliding Mode with Time Delay Control for Robot Manipulators, pp. 135–156. Springer, Singapore (2017)Google Scholar
  20. 20.
    Kali, Y., Saad, M., Benjelloun, K., Fatemi, A.: Discrete-time second order sliding mode with time delay control for uncertain robot manipulators. Robot. Auton. Syst. 94(Supplement C), 53–60 (2017). CrossRefGoogle Scholar
  21. 21.
    Kim, J., Jin, M.: Synchronization of chaotic systems using particle swarm optimization and time-delay estimation. Nonlinear Dyn. 86(3), 2003–2015 (2016). CrossRefGoogle Scholar
  22. 22.
    Lee, J., Chang, P., Jin, M.: Adaptive integral sliding mode control with time-delay estimation for robot manipulators. IEEE Trans. Ind. Electron. (2017). Google Scholar
  23. 23.
    Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993). MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liu, H., Tian, X., Wang, G., Zhang, T.: Finite-time \(h_{\infty }\) control for high-precision tracking in robotic manipulators using backstepping control. IEEE Trans. Ind. Electron. 63(9), 5501–5513 (2016). CrossRefGoogle Scholar
  25. 25.
    Liu, J., Wang, X.: Advanced Sliding Mode Control for Mechanical Systems. Springer, New York (2012)zbMATHGoogle Scholar
  26. 26.
    Moreno, J.A., Osorio, M.: A lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control, 2008. CDC 2008, pp. 2856–2861 (2008).
  27. 27.
    Mu, C., Sun, C.: A new finite time convergence condition for super-twisting observer based on Lyapunov analysis. Asian J. Control 17(3), 1050–1060 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mujumdar, A., Tamhane, B., Kurode, S.: Observer-based sliding mode control for a class of noncommensurate fractional-order systems. IEEE/ASME Trans. Mech. 20(5), 2504–2512 (2015). CrossRefGoogle Scholar
  29. 29.
    Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50(3), 984–988 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nikdel, N., Badamchizadeh, M., Azimirad, V., Nazari, M.A.: Fractional-order adaptive backstepping control of robotic manipulators in the presence of model uncertainties and external disturbances. IEEE Trans. Ind. Electron. 63(10), 6249–6256 (2016). CrossRefGoogle Scholar
  31. 31.
    Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, New York (2014)CrossRefGoogle Scholar
  32. 32.
    Slotine, J., Li, W.: Applied Nonlinear Control. Prentice-Hall International, Upper Saddle River (1991)zbMATHGoogle Scholar
  33. 33.
    Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. (2013). MathSciNetzbMATHGoogle Scholar
  34. 34.
    Suryawanshi, P.V., Shendge, P.D., Phadke, S.B.: Robust sliding mode control for a class of nonlinear systems using inertial delay control. Nonlinear Dyn. (2014). Google Scholar
  35. 35.
    Utkin, V.: On convergence time and disturbance rejection of super-twisting control. IEEE Trans. Autom. Control 58(8), 2013–2017 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor-Francis, Abington on Thames (1999)Google Scholar
  37. 37.
    Wang, H.: Adaptive control of robot manipulators with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 62(2), 948–954 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wang, L., Chai, T., Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009). CrossRefGoogle Scholar
  39. 39.
    Yang, J., Su, J., Li, S., Yu, X.: High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans. Ind. Inform. 10(1), 604–614 (2014). CrossRefGoogle Scholar
  40. 40.
    Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. ASME J. Dyn. Syst. Meas. Control 112, 133–141 (1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ecole Mohammadia d’IngénieursMohammed V UniversityRabatMorocco
  2. 2.Ecole de Technologie supérieureMontrealCanada
  3. 3.President of Robotics Design Inc.MontrealCanada

Personalised recommendations