Nonlinear Dynamics

, Volume 92, Issue 4, pp 1881–1897 | Cite as

Spatiotemporal activities of a pulse-coupled biological neural network

  • K. K. Mineeja
  • Rose P. Ignatius
Original Paper


The present work is on the spatiotemporal activities and effects of chaotic neurons in a pulse-coupled biological neural network. The biological neural network used is that of Caenorhabditis elegans. Because of its similarity to human neural network, it can be used to understand the simple dynamics of human brain. Within the network the neurons are found to exhibit chaotic nature, even though their parameters are that of normal neurons. It is observed that when the strength of synaptic conductance is increased, initially the bursting synchronization, entropy of the network and the average firing rate decrease slightly and then increase. Since chaotic dynamics of neuron plays an important role in human brain functions, the neurons of the network are intentionally made chaotic and the dynamics is studied. As the neurons of the network are made chaotic, ‘near-death’-like surges of neuron activity before ending firing is observed throughout the network. Also, the brain dynamics changes from alert to rest state. When most of the neurons of the network are made chaotic, their activities become independent of the coupling strength.


Biological neural network Chaotic neurons Near-death surges Average firing rate Entropy Bursting synchronization 


  1. 1.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2014)Google Scholar
  2. 2.
    Resmi, V., Ambika, G., Amritkar, R.E.: General mechanism for amplitude death in coupled systems. Phys. Rev. E 84, 46212 (2011)CrossRefGoogle Scholar
  3. 3.
    Zou, W., Senthilkumar, D.V., Koseska, A., Kurths, J.: Generalizing the transition from amplitude to oscillation death in coupled oscillators. Phys. Rev. E 88, 50901 (2013)CrossRefGoogle Scholar
  4. 4.
    Banerjee, T., Biswas, D.: Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion. Chaos Interdiscip. J. Nonlinear Sci. 23, 43101 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Thottil, S.K., Ignatius, R.P.: Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dyn. 87(3), 1879–1899 (2017)CrossRefGoogle Scholar
  6. 6.
    Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58(12), 2038–2045 (2015)CrossRefGoogle Scholar
  7. 7.
    Hizanidis, J., Kouvaris, N.E., Gorka, Z.-L., Díaz-Guilera, A., Antonopoulos, C.G.: Chimera-like states in modular neural networks. Sci. Rep. 6, 19845 (2016)CrossRefGoogle Scholar
  8. 8.
    Tsigkri-DeSmedt, N.D., Hizanidis, J., Hovel, P., Provata, A.: Multi-chimera states in the Leaky Integrate-and-Fire model. Procedia Comput. Sci. 66, 13–22 (2015)CrossRefGoogle Scholar
  9. 9.
    Ermentrout, B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 4 (1998)CrossRefGoogle Scholar
  10. 10.
    Ma, J., Wang, C., Jin, W.: Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Phys. A Stat. Mech. Appl. 461, 586–594 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Panaggio, M.J., Abrams, D.M.: Chimera states: Coexistance of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, 3 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bogaard, A., Parent, J., Zochowski, M., Booth, V.: Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. J. Neurosci. 29(6), 1677–1687 (2009)CrossRefGoogle Scholar
  13. 13.
    Wang, Q., Zheng, Y., Ma, J.: Cooperative dynamics in neuronal networks. Chaos Solitons Fractals 56, 19–27 (2013)CrossRefGoogle Scholar
  14. 14.
    Erichsen Jr., R., Brunnet, L.G.: Multistability in networks of Hindmarsh–Rose neurons. Phys. Rev. E. 78, 61917 (2008)CrossRefGoogle Scholar
  15. 15.
    Jia, Y., Gu, H.: Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise. Chaos An Interdiscip. J. Nonlinear Sci. 25, 123124 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Feng, Y., Li, W.: Analysis on the synchronized network of Hindmarsh–Rose neuronal models. J. Phys. Conf. Ser. 604, 12006 (2015)CrossRefGoogle Scholar
  17. 17.
    Acker, C.D., Kopell, N., White, J.A.: Synchronization of strongly coupled excitatory neurons: relating network behavior to Biophysics. J. Comput. Neurosci. 15(1), 71–90 (2003)CrossRefGoogle Scholar
  18. 18.
    Luccioli, S., Politi, A.: Collective behavior of heterogeneous neural networks. Phys. Rev. Lett. 105, 158104 (2010)CrossRefGoogle Scholar
  19. 19.
    Cichy, R.M., Khosla, A., Pantazis, D., Torralba, A., Oliva, A.: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755 (2016)CrossRefGoogle Scholar
  20. 20.
    Chen, Y., Rangarajan, G., Ding, M.: Stability of synchronized dynamics and pattern formation in coupled systems: review of some recent results. Commun. Nonlinear Sci. Numer. Simul. 11, 934–960 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Destexhe, A.: Stability of periodic oscillations in a network of neurons with time delay. Phys. Lett. A. 187(4), 309–316 (1994)CrossRefGoogle Scholar
  22. 22.
    Wang, H., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85(2), 881–891 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sprott, J.C.: Chaotic dynamics on large networks. Chaos Interdiscip. J. Nonlinear Sci. 18, 23135 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wu, J., Xu, Y., Ma, J.: Levy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS One 12(3), e0174330 (2017)CrossRefGoogle Scholar
  25. 25.
    Roxin, A., Brunel, N., Hansel, D.: Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys. Rev. Lett. 94, 238103 (2005)CrossRefGoogle Scholar
  26. 26.
    Keplinger, K., Wackerbauer, R.: Transient spatiotemporal chaos in the Morris–Lecar neuronal ring network. Chaos Interdiscip. J. Nonlinear Sci. 24, 13126 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Truccolo, W., Hochberg, L.R., Donoghue, J.P.: Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat. Neurosci. 13(1), 105–111 (2010)CrossRefGoogle Scholar
  28. 28.
    Fink, C.G., Booth, V., Zochowski, M.: Cellularly-driven differences in network synchronization propensity are differentially modulated by firing frequency. PLoS Comput. Biol. 7(5), e1002062 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Garbo, A.Di, Barbi, M., Chillemi, S., Alloisio, S., Nobile, M.: Calcium signalling in astrocytes and modulation of neural activity. BioSystems 89, 74–83 (2007)CrossRefGoogle Scholar
  30. 30.
    Guo, S., Tang, J., Ma, J., Wang, C.: Autaptic modulation of electrical activity in a network of neuron-coupled astrocyte. Compexity 2017, 4631602 (2017)MathSciNetGoogle Scholar
  31. 31.
    Tang, J., Zhang, J., Ma, J., Zhang, G., Yang, X.: Astrocyte calcium wave induces seizure-like behavior in neuron network. Sci. China Technol. Sci. 60(7), 1011–1018 (2017)CrossRefGoogle Scholar
  32. 32.
    Freeman, W.J.: Role of chaotic dynamics in neural plasticity. Prog. Brain Res. 102, 319–333 (1994)CrossRefGoogle Scholar
  33. 33.
    Sato, W., Kochiyama, T., Uono, S.: Spatiotemporal neural network dynamics for the processing of dynamic facial expressions. Sci. Rep. 5, 12432 (2015)CrossRefGoogle Scholar
  34. 34.
    Korn, H., Faure, P.: Is there chaos in the brain ? II. Experimental evidence and related models. C. R. Biol. 326, 787–840 (2003)CrossRefGoogle Scholar
  35. 35.
    Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., Chklovskii, D.B.: Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7(2), e1001066 (2011)CrossRefGoogle Scholar
  36. 36.
    Antonopoulos, C.G., Fokas, A.S., Bountis, T.C.: Dynamical complexity in the C. elegans neural network. Eur. Phys. J. Spec. Top 225(6–7), 1255–1269 (2016)CrossRefGoogle Scholar
  37. 37.
    Kosinski, R.A., Zaremba, M.: Dynamics of the model of the Caenorhabditis elegans neural network. Acta Phys. Pol. B. 38(6), 2201–2210 (2007)Google Scholar
  38. 38.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 6 (2003)CrossRefGoogle Scholar
  39. 39.
    Izhikevich, E.M.: Which model to use for Cortical spiking neurons. IEEE Trans. Neural Netw. 15, 5 (2004)CrossRefGoogle Scholar
  40. 40.
    Izhikevich, E.M.: Hybrid spiking models. Philos. Trans. R. Soc. A. 368, 5061–5070 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Altun, Z.F., Hall, D.H.: Nervous System, General Description.
  42. 42.
    Kaiser, M., Hilgetag, C.C.: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2(7), e95 (2006)CrossRefGoogle Scholar
  43. 43.
    Kotter, R.: Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2(2), 127–144 (2004)CrossRefGoogle Scholar
  44. 44.
    Choe, Y., McCormick, B., Koh, W.: Network connectivity analysis on the temporally augmented C. elegans web : A pilot study. Soc. Neurosci. Abstr. 30, 921.9 (2004)Google Scholar
  45. 45.
    Dorval, A.D.: Probability distributions of the logarithm of inter-spike intervals yield accurate entropy estimates from small datasets. J. Neurosci. Methods. 173(1), 129–139 (2008)CrossRefGoogle Scholar
  46. 46.
    Dur-e-Ahmad, M., Nicola, W., Campbell, S.A., Skinner, F.K.: Network bursting using experimentally constrained single compartment CA3 hippocampal neuron models with adaptation. J. Comput. Neurosci. 33(1), 21–40 (2012)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Jin, W., Lin, Q., Wang, A., Wang, C.: Computer simulation of noise effects of the neighborhood of stimulus threshold for a Mathematical model of homeostatic regulation of sleep-wake cycles. Compexity 2017, 4797545 (2017)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Chawla, L.S., Akst, S., Junker, C., Jacobs, B.R.N., Seneff, M.G.: Surges of Electroencephalogram activity at the time of death: a case series. J. Palliat. Med. 12(12), 1095–1100 (2009)CrossRefGoogle Scholar
  49. 49.
    Norton, L., Gibson, R.M., Gofton, T., Benson, C., Dhanani, S., Shemie, S.D., Hornby, L., Ward, R., Young, G.B.: Electroencephalographic recordings during withdrawal of life-sustaining therapy until 30 minutes after declaration of death. Can. J. Neurol. Sci. 44(2), 139–145 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSt. Teresa’s collegeErnakulamIndia

Personalised recommendations