Nonlinear Dynamics

, Volume 92, Issue 3, pp 961–971 | Cite as

Assessment of the harmonic balance method on a self-oscillating one-degree-of-freedom system with regularized friction

  • Pierre Vigué
  • Christophe Vergez
  • Sami Karkar
  • Bruno Cochelin
Original Paper
  • 82 Downloads

Abstract

Time-periodic solutions of dynamical systems can be looked for using a discretization method. This paper tests the harmonic balance method (HBM) on a one-degree-of-freedom system (mass, damper, spring, belt) with a regularized friction law. Its relative error is computed with respect to the number of discretization unknowns. Despite the widespread idea that frequency methods are hardly applicable to friction problems, the HBM compares well with a classical time-domain method for this nonlinear system. The main conclusion of this article is that the HBM, without any specific optimization, is well suited for regularized friction.

Keywords

Nonlinear dynamics Harmonic balance method Orthogonal collocation method Periodic solutions Friction Numerical continuation 

Notes

Acknowledgements

This work has been carried out in the framework of the Labex MEC (ANR-10-LABX-0092). The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University— A\(^*\)MIDEX, a French “Investissements d’Avenir” programme.

References

  1. 1.
    Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56, 149–154 (1989)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324, 243–262 (2009)CrossRefGoogle Scholar
  3. 3.
    Karkar, S., Vergez, C., Cochelin, B.: A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems. J. Sound Vib. 333(12), 2554–2567 (2014)CrossRefGoogle Scholar
  4. 4.
    Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23(1), 1–10 (1986)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)CrossRefMATHGoogle Scholar
  6. 6.
    Awrejcewicz, J., Olejni, P.: Analysis of dynamic systems with various friction laws. ASME Appl. Mech. Rev. 58, 389–411 (2005)CrossRefGoogle Scholar
  7. 7.
    Vigué, P., Vergez, C., Karkar, S., Cochelin, B.: Regularized friction and continuation: comparison with Coulomb’s law. J. Sound Vib. 389, 350–363 (2017)CrossRefGoogle Scholar
  8. 8.
    Grolet, A., Thouverez, F.: On a new harmonic selection technique for harmonic balance method. Mech. Syst. Signal Process. 30, 43–60 (2012)CrossRefGoogle Scholar
  9. 9.
    Engelborghs, K., Luzyanina, T., Hout, K.I.T., Roose, D.: Collocation methods for the computation of periodic solutions of delay differential equations. SIAM J. Sci. Comput. 22(5), 1593–1609 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Karkar, S., Arquier, R., Cochelin, B., Vergez, C., Lazarus, A., Thomas, O.: MANLAB, an interactive continuation software. http://manlab.lma.cnrs-mrs.fr. Accessed December 2017
  11. 11.
    de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582–606 (1973)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Shampine, L.F., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Pierre Vigué
    • 1
  • Christophe Vergez
    • 1
  • Sami Karkar
    • 2
  • Bruno Cochelin
    • 1
  1. 1.LMA, Centrale Marseille, CNRSAix Marseille UnivMarseilleFrance
  2. 2.Ecole Centrale de LyonEcully CedexFrance

Personalised recommendations