Advertisement

Spiking activities in chain neural network driven by channel noise with field coupling

  • Ying Xu
  • Ya JiaEmail author
  • Huiwen Wang
  • Ying Liu
  • Ping Wang
  • Yunjie Zhao
Original Paper
  • 157 Downloads

Abstract

The distribution of electromagnetic field in both intracellular and extracellular environments can be changed by fluctuations in the membrane potential, and the effects of electromagnetic induction should be considered in dealing with neuronal electrical activities, wherein field coupling plays a very important role in signal exchange between neurons. In this paper, basing on an improved electromagnetic induction model, a chain network is designed to investigate the responses of the neural system to channel noise under field coupling. Both the synchronization factor and coefficient of variation are numerically simulated, and it is found that (i) the weak field coupling strength is conducive to the regularity of discharge patterns in the neuronal network; (ii) the synchronization of neural spikes can be enhanced by selecting a suitable coupling intensity; and (iii) in the presence of the weak noise intensity, the discharge mode of neuron is easily affected by the inducing coefficient. Our results show that the regularity of discharge patterns in a stochastic neural network depends on the field coupling intensity, which reflects the importance of field coupling in the selection of neural discharge modes.

Keywords

Electromagnetic induction Field coupling Channel noise Neuronal network 

Notes

Acknowledgements

The authors gratefully acknowledge Prof. Jun Ma from Lanzhou University of Technology for his constructive suggestions. This work was supported by the National Natural Science Foundation of China, under Grant Nos. 11775091 and 11474117.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest.

References

  1. 1.
    Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002)CrossRefGoogle Scholar
  2. 2.
    He, D., Shi, P., Stone, L.: Noise-induced synchronization in realistic models. Phys. Rev. E 67, 027201 (2003)CrossRefGoogle Scholar
  3. 3.
    Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453–L457 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Moss, F., Pierson, D., O’Gorman, D.: Stochastic resonance: tutorial and update. Int. J. Bifurc. Chaos 4, 1383 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Guo, D., Matjaž, P., Zhang, Y., Yao, D.: Frequency-difference-dependent stochastic resonance in neural systems. Phys. Rev. E 96, 022415 (2017)CrossRefGoogle Scholar
  6. 6.
    Perc, M.: Spatial coherence resonance in excitable media. Phys. Rev. E 72, 016207 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jung, P.: Periodically driven stochastic systems. Phys. Rep. 234, 175–295 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998)CrossRefGoogle Scholar
  9. 9.
    Brunel, N., Chance, F.S., Fourcaud, N., Abbott, L.F.: Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys. Rev. Lett. 86, 2186–2189 (2001)CrossRefGoogle Scholar
  10. 10.
    Hille, B.: Ionic channels of excitable membranes. Neurology 42, 1439 (1992)Google Scholar
  11. 11.
    Lin, X., Gong, Y., Wang, L.: Multiple coherence resonance induced by time-periodic coupling in stochastic Hodgkin–Huxley neuronal networks. Chaos 21, 043109 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Maisel, B., Lindenberg, K.: Channel noise effects on first spike latency of a stochastic Hodgkin–Huxley neuron. Phys. Rev. E 95, 022414 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Schmid, G., Goychuk, I., Hänggi, P.: Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin–Huxley model. Phys. Biol. 1, 61 (2004)CrossRefGoogle Scholar
  14. 14.
    Jung, P., Shuai, J.W.: Optimal sizes of ion channel clusters. Europhys. Lett. 56, 29–35 (2007)CrossRefGoogle Scholar
  15. 15.
    Saikhedkar, N., Bhatnagar, M., Jain, A., Sukhwal, P., Sharma, C., Jaiswal, N.: Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain. Neurol. Res. 36, 1072–1079 (2014)CrossRefGoogle Scholar
  16. 16.
    Kaprana, A.E., Karatzanis, A.D., Prokopakis, E.P., Panagiotaki, I.E., Vardiambasis, I.O., Adamidis, G., Christodoulou, P., Velegrakis, G.A.: Studying the effects of mobile phone use on the auditory system and the central nervous system: a review of the literature and future directions. Eur. Arch. Oto Rhino Laryngol. 265, 1011 (2008)CrossRefGoogle Scholar
  17. 17.
    Bao, B., Hu, A., Xu, Q., Bao, H., Wu, H., Chen, M.: AC-induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn. 92, 1695–1706 (2018)CrossRefGoogle Scholar
  18. 18.
    Ren, G., Xu, Y., Wang, C.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88, 893–901 (2017)CrossRefGoogle Scholar
  19. 19.
    Yu, K., Wang, J., Deng, B., Wei, X.: Synchronization of neuron population subject to steady DC electric field induced by magnetic stimulation. Cognit. Neurodyn. 7, 237–252 (2013)CrossRefGoogle Scholar
  20. 20.
    Lu, L., Jia, Y., Liu, W., Yang, L.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017, 7628537 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ge, M., Jia, Y., Xu, Y., Yang, L.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)CrossRefGoogle Scholar
  22. 22.
    Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116, 497–506 (1952)CrossRefGoogle Scholar
  23. 23.
    Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)CrossRefGoogle Scholar
  24. 24.
    Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)CrossRefGoogle Scholar
  25. 25.
    Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)CrossRefGoogle Scholar
  26. 26.
    Xu, F., Zhang, J., Fang, T., Huang, S., Wang, M.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92, 1395–1402 (2018)CrossRefGoogle Scholar
  27. 27.
    Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)CrossRefGoogle Scholar
  28. 28.
    Gu, H., Pan, B., Li, Y.: The dependence of synchronization transition processes of coupled neurons with coexisting spiking and bursting on the control parameter, initial value, and attraction domain. Nonlinear Dyn. 82, 1191–1210 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Bartsch, R., Kantelhardt, J.W., Penzel, T., Havlin, S.: Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys. Rev. Lett. 98, 054102 (2007)CrossRefGoogle Scholar
  30. 30.
    Xu, Y., Jia, Y., Ge, M., Lu, L., Yang, L., Zhan, X.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)CrossRefGoogle Scholar
  31. 31.
    Ma, J., Wu, F., Alsaedi, A., Tang, J.: Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn. 93, 2057–2069 (2018)CrossRefGoogle Scholar
  32. 32.
    Casado, J.M., Baltanás, J.P.: Phase switching in a system of two noisy Hodgkin–Huxley neurons coupled by a diffusive interaction. Phys. Rev. E 68, 061917 (2003)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Xu, X., Ni, L., Wang, R.: A neural network model of spontaneous up and down transitions. Nonlinear Dyn. 84, 1541–1551 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Gutierrez, G.J., O’Leary, T., Marder, E.: Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77, 845–858 (2013)CrossRefGoogle Scholar
  35. 35.
    Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104 (2004)CrossRefGoogle Scholar
  36. 36.
    Yao, C., Zhan, M., Shuai, J., Ma, J., Kurths, J.: Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling. Chaos 27, 126702 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wang, H., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85, 881–891 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lu, L., Jia, Y., Kirunda, J., Xu, Y., Ge, M., Pei, Q., Yang, L.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. (2018).  https://doi.org/10.1007/s11071-018-4652-9
  39. 39.
    Mesin, L.: Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity. Chaos Solitons Fractals 45, 1220–1230 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ozer, M., Uzuntarla, M.: Effects of the network structure and coupling strength on the noise-induced response delay of a neuronal network. Phys. Lett. A 372, 4603–4609 (2008)CrossRefzbMATHGoogle Scholar
  41. 41.
    Yu, L., Chen, Y., Zhang, P.: Frequency and phase synchronization of two coupled neurons with channel noise. Eur. Phys. J. B 59, 249–257 (2007)CrossRefGoogle Scholar
  42. 42.
    Ma, J., Xu, Y., Ren, G., Wang, C.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84, 497–509 (2016)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Braun, H.A., Wissing, H., Schäfer, K., Hirsch, M.C.: Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367, 270–273 (1994)CrossRefGoogle Scholar
  44. 44.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  45. 45.
    Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Li, Q., Zeng, H., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wu, F., Wang, C., Jin, W., Ma, J.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Phys. A 469, 81–88 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ozer, M.: Frequency-dependent information coding in neurons with stochastic ion channels for subthreshold periodic forcing. Phys. Lett. A 354, 258–263 (2006)CrossRefGoogle Scholar
  49. 49.
    Li, J., Liu, S., Liu, W., Yu, Y., Wu, Y.: Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dyn. 83, 801–810 (2016)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)CrossRefGoogle Scholar
  51. 51.
    Xu, Y., Jia, Y., Kirunda, J.B., Shen, J., Ge, M., Lu, L., Pei, Q.: Dynamic behaviors in coupled neuron system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018, 3012743 (2018)Google Scholar
  52. 52.
    Ge, M., Jia, Y., Kirunda, J.B., Xu, Y., Shen, J., Lu, L.L., Liu, Y., Pei, Q., Zhan, X., Yang, L.: Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320, 60–68 (2018)CrossRefGoogle Scholar
  53. 53.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)CrossRefGoogle Scholar
  54. 54.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Physics and Institute of BiophysicsCentral China Normal UniversityWuhanPeople’s Republic of China

Personalised recommendations