Advertisement

Nonlinear Dynamics

, Volume 91, Issue 3, pp 1817–1834 | Cite as

A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting

  • Liuyang Xiong
  • Lihua Tang
  • Brian R. Mace
Original Paper

Abstract

This work exploits a 2:1 internal resonance mechanism to enhance broadband vibration energy harvesting. It is achieved by adding a properly tuned auxiliary oscillator to the primary energy harvesting oscillator coupled by a nonlinear magnetic force. A theoretical study is conducted on the nonlinear dynamic and energy harvesting performance of the proposed harvester by various analytical approximations, and the accuracy of these analytical models is investigated. Given harmonic base excitation, the output voltage frequency response is derived by the multi-scale method and harmonic balance method (HBM), which are then verified by equivalent circuit simulations and experiments. The necessity of taking into account the zeroth-order harmonic component in the HBM is verified and discussed. The HBM result without this component and the multi-scale method fail to accurately predict the nonlinear dynamic behaviour. With the validated HBM model and the equivalent circuit model, key features of internal resonance are revealed by investigating modal interaction and saturation phenomena under varying excitation. By and large, the operational bandwidth of the vibration energy harvester is enlarged due to the 2:1 internal resonance.

Keywords

Energy harvesting Nonlinear internal resonance Multi-scale method Harmonic balance method Circuit simulation 

Notes

Acknowledgements

This work is financially supported by the PhD scholarship from China scholarship Council (no. 201506890009).

References

  1. 1.
    Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 041002 (2008)CrossRefGoogle Scholar
  2. 2.
    Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 101(9), 094102 (2012)CrossRefGoogle Scholar
  3. 3.
    Eichhorn, C., Tchagsim, R., Wilhelm, N., Woias, P.: A smart and self-sufficient frequency tunable vibration energy harvester. J. Micromech. Microeng. 21(10), 104003 (2011)CrossRefGoogle Scholar
  4. 4.
    Roundy, S., Zhang, Y.: Toward self-tuning adaptive vibration based micro-generators. In: Proceedings of SPIE, Smart Structures, Devices, and Systems II, vol. 5649 (2005).  https://doi.org/10.1117/12.581887
  5. 5.
    Ahmed-Seddik, B., Despesse, G., Boisseau, S., Defay, E.: Self-powered resonant frequency tuning for piezoelectric vibration energy harvesters. In: Journal of Physics: Conference Series, vol. 476 (2013)Google Scholar
  6. 6.
    Gu, L., Livermore, C.: Compact passively self-tuning energy harvesting for rotating applications. Smart Mater. Struct. 21(1), 015002 (2012)CrossRefGoogle Scholar
  7. 7.
    Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., Taroni, A.: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sens. Actuators A Phys. 142(1), 329–335 (2008)CrossRefGoogle Scholar
  8. 8.
    El-Hebeary, M.M.R., Arafa, M.H., Megahed, S.M.: Modeling and experimental verification of multi-modal vibration energy harvesting from plate structures. Sens. Actuators A Phys. 193, 35–47 (2013)CrossRefGoogle Scholar
  9. 9.
    Bai, X., Wen, Y., Li, P., Yang, J., Peng, X., Yue, X.: Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling. Sens. Actuators A Phys. 209, 78–86 (2014)CrossRefGoogle Scholar
  10. 10.
    Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)CrossRefGoogle Scholar
  11. 11.
    Ferrari, M., Ferrari, V., Guizzetti, M., Ando, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuators A Phys. 162(2), 425–431 (2010)CrossRefGoogle Scholar
  12. 12.
    Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osorio, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20(5), 545–557 (2009)CrossRefGoogle Scholar
  13. 13.
    Zhou, S., Cao, J., Lin, J.: Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn. 86(3), 1599–1611 (2016)CrossRefGoogle Scholar
  14. 14.
    Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D Nonlinear Phenom. 239(10), 640–653 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tang, L., Yang, Y., Soh, C.K.: Improving functionality of vibration energy harvesters using magnets. J. Intell. Mater. Syst. Struct. 23(13), 1433–1449 (2012)CrossRefGoogle Scholar
  16. 16.
    Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)CrossRefGoogle Scholar
  17. 17.
    Li, H., Qin, W., Lan, C., Deng, W., Zhou, Z.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25(1), 015001 (2016)CrossRefGoogle Scholar
  18. 18.
    Cao, J., Zhou, S., Wang, W., Lin, J.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106(17), 173903 (2015)CrossRefGoogle Scholar
  19. 19.
    Xu, J., Tang, J.: Piezoelectric cantilever-pendulum for multi-directional energy harvesting with internal resonance. In: Proceeding of SPIE, Active and Passive Smart Structures and Integrated Systems 2016, vol. 9431, pp. 94310M (2015)Google Scholar
  20. 20.
    Chen, L., Jiang, W., Panyam, M., Daqaq, M.F.: Nonlinear modal interactions to improve the broadband transduction of vibratory energy harvesters. In: ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems 2015, vol. 2 (2016)Google Scholar
  21. 21.
    Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Comments on energy harvesting on a 2:1 internal resonance portal frame support structure, using a nonlinear-energy sink as a passive controller. Int. Rev. Mech. Eng. (IREME) 10(3), 147–156 (2016)CrossRefGoogle Scholar
  22. 22.
    Chen, L., Jiang, W.: A piezoelectric energy harvester based on internal resonance. Acta Mech. Sin. 31(2), 223–228 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chen, L., Jiang, W.: Internal resonance energy harvesting. J. Appl. Mech. 82(3), 031004 (2015)CrossRefGoogle Scholar
  24. 24.
    Xiong, L., Tang, L., Ding, H., Chen, L., Mace, B.: Broadband performance of a piezoelectric energy harvester based on the internal resonance of buckled beam. In: Proceedings of SPIE, Active and Passive Smart Structures and Integrated Systems 2016, vol. 9799, pp. 97993O (2016)Google Scholar
  25. 25.
    Jiang, W., Chen, L., Ding, H.: Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dyn. 85(4), 2507–2520 (2016)CrossRefGoogle Scholar
  26. 26.
    Erturk, A., Renno, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20(5), 529–544 (2009)CrossRefGoogle Scholar
  27. 27.
    Cao, D., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224(14–15), 2867–2880 (2015)CrossRefGoogle Scholar
  28. 28.
    Chen, L., Jiang, W., Panyam, M., Daqaq, M.F.: A broadband internally resonant vibratory energy harvester. J. Vib. Acoust. 138(6), 061007 (2016)CrossRefGoogle Scholar
  29. 29.
    Harne, R.L., Sun, A., Wang, K.W.: Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system. J. Sound Vib. 363, 517–531 (2016)CrossRefGoogle Scholar
  30. 30.
    Levitt, M.H.: Spin Dynamics: Basics of Nuclear Magnetic Resonance. Wiley, Hoboken (2001)Google Scholar
  31. 31.
    Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Mestrom, W., Riet, A., Sautois, B.: MATCONT and CL MATCONT: continuation toolboxes in matlab. Universiteit Gent, Belgium and Utrecht University, Belgium (2006)Google Scholar
  32. 32.
    Leadenham, S.: Advanced concepts in nonlinear piezoelectric energy harvesting: intentionally designed, inherently present, and circuit nonlinearities. Georgia Institute of Technology, Atlanta (2015)Google Scholar
  33. 33.
    Xiong, L., Tang, L., Mace, B.R.: Internal resonance with commensurability induced by an auxiliary oscillator for broadband energy harvesting. Appl. Phys. Lett. 108(20), 203901 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand

Personalised recommendations