Nonlinear Dynamics

, Volume 92, Issue 2, pp 153–167 | Cite as

Dimensionless modeling and nonlinear analysis of a coupled pitch–plunge–leadlag airfoil-based piezoaeroelastic energy harvesting system

Original Paper
  • 143 Downloads

Abstract

In this paper, an airfoil-based piezoaeroelastic energy harvesting system is proposed with an additional supporting device to harvest the mechanical energy from the leadlag motion. A dimensionless dynamic model is built considering the large-effective-angle-of-attack vibrations causing (1) the nonlinear coupling between the pitch–plunge–leadlag motions, (2) the inertia nonlinearity, and (3) the aerodynamic nonlinearity modeled by the ONERA dynamic stall model. Cubic hardening stiffness is introduced in the pitch degree of freedom for persistent vibrations with acceptable amplitude beyond the flutter boundary. The nonlinear aeroelastic response and the average power output are numerically studied. Limit cycle oscillations are observed and, as the flow velocity exceeds a secondary critical speed, the system experiences complex vibrations. The power output from the leadlag motion is smaller than that from the plunge motion, whereas the gap is narrowed with increasing flow velocity. Case studies are performed toward the effects of several dimensionless system parameters, including the nonlinear torsional stiffness, airfoil mass eccentricity, airfoil radius of gyration, mass of the supporting devices, and load resistances in the external circuits. The optimal parameter values for the power outputs from the plunge and leadlag motions are, respectively, obtained. Beyond the secondary critical speed, it is shown that the variations of the power outputs with those parameters become irregular with fluctuations and multiple local maximums. The bifurcation analysis shows the mutual transitions between the limit cycle oscillations, multi-periodic vibrations, and possible chaos. The influences of these complex vibrations on the power outputs are discussed.

Keywords

Piezoaeroelastic Pitch–plunge–leadlag Airfoil Energy harvesting Nonlinear Bifurcation 

Notes

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China under Grant Numbers 11402014 and 11572023, and the Academic Excellence Foundation of BUAA for PhD Students under Grant Number 2017033.

References

  1. 1.
    Xiang, J., Yan, Y., Li, D.: Recent advance in nonlinear aeroelastic analysis and control of the aircraft. Chin. J. Aeronaut. 27, 12–22 (2014)CrossRefGoogle Scholar
  2. 2.
    Li, D., Wu, Y., Da Ronch, A., Xiang, J.: Energy harvesting by means of flow-induced vibrations on aerospace vehicles. Prog. Aerosp. Sci. 86, 28–62 (2016)CrossRefGoogle Scholar
  3. 3.
    Abdelkefi, A.: Aeroelastic energy harvesting: a review. Int. J. Eng. Sci. 100, 112–135 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dunnmon, J.A., Stanton, S.C., Mann, B.P., Dowell, E.H.: Power extraction from aeroelastic limit cycle oscillations. J. Fluids Struct. 27, 1182–1198 (2011)CrossRefGoogle Scholar
  5. 5.
    Dai, H.L., Abdelkefi, A., Javed, U., Wang, L.: Modeling and performance of electromagnetic energy harvesting from galloping oscillations. Smart Mater. Struct. 24, 045012 (2015)CrossRefGoogle Scholar
  6. 6.
    Akaydin, H.D., Elvin, N., Andreopoulos, Y.: The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21, 025007 (2012)CrossRefGoogle Scholar
  7. 7.
    Ding, L., Zhang, L., Bernitsas, M.M., Chang, C.: Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control. Renew. Energy 85, 1246–1259 (2016)CrossRefGoogle Scholar
  8. 8.
    Xu-Xu, J., Barrero-Gil, A., Velazquez, A.: A theoretical study of the coupling between a vortex-induced vibration cylindrical resonator and an electromagnetic energy harvester. Smart Mater. Struct. 24, 115009 (2015)CrossRefGoogle Scholar
  9. 9.
    Abdelkefi, A., Scanlon, J.M., Mcdowell, E., Hajj, M.R.: Performance enhancement of piezoelectric energy harvesters from wake galloping. Appl. Phys. Lett. 103, 033903 (2013)CrossRefGoogle Scholar
  10. 10.
    Jung, H., Seung-Woo, L.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20, 055022 (2011)CrossRefGoogle Scholar
  11. 11.
    Goushcha, O., Elvin, N., Andreopoulos, Y.: Interactions of vortices with a flexible beam with applications in fluidic energy harvesting. Appl. Phys. Lett. 104, 021919 (2014)CrossRefGoogle Scholar
  12. 12.
    Akaydın, H.D., Elvin, N., Andreopoulos, Y.: Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials. Exp. Fluids 49, 291–304 (2010)CrossRefGoogle Scholar
  13. 13.
    Xiang, J., Wu, Y., Li, D.: Energy harvesting from the discrete gust response of a piezoaeroelastic wing: modeling and performance evaluation. J. Sound Vib. 343, 176–193 (2015)CrossRefGoogle Scholar
  14. 14.
    Goushcha, O., Akaydin, H.D., Elvin, N., Andreopoulos, Y.: Energy harvesting prospects in turbulent boundary layers by using piezoelectric transduction. J. Fluids Struct. 54, 823–847 (2015)CrossRefGoogle Scholar
  15. 15.
    De Marqui Jr., C., Erturk, A.: Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction. J. Intell. Mater. Syst. Struct. 24, 846–854 (2013)CrossRefGoogle Scholar
  16. 16.
    Dias, J.A.C., De Marqui Jr., C., Erturk, A.: Hybrid piezoelectric-inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling. Appl. Phys. Lett. 102, 044101 (2013)CrossRefGoogle Scholar
  17. 17.
    Erturk, A., Vieira, W.G.R., De Marqui Jr., C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010)CrossRefGoogle Scholar
  18. 18.
    Bryant, M., Garcia, E.: Modeling and testing of a novel aeroelastic flutter energy harvester. J. Vib. Acoust. 133, 011010 (2011)CrossRefGoogle Scholar
  19. 19.
    Bryant, M., Wolff, E., Garcia, E.: Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters. Smart Mater. Struct. 20, 125017 (2011)CrossRefGoogle Scholar
  20. 20.
    Abdelkefi, A., Hajj, M.R.: Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity. Theor. Appl. Mech. Lett. 3, 041001 (2013)CrossRefGoogle Scholar
  21. 21.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 67, 925–939 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)CrossRefGoogle Scholar
  23. 23.
    Bae, J., Inman, D.J.: Aeroelastic characteristics of linear and nonlinear piezo-aeroelastic energy harvester. J. Intell. Mater. Syst. Struct. 4, 401–416 (2014)CrossRefGoogle Scholar
  24. 24.
    Sousa, V.C., de Anicézio, M., De Marqui Jr., C., Erturk, A.: Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment. Smart Mater. Struct. 20, 094007 (2011)CrossRefGoogle Scholar
  25. 25.
    Abdelkefi, A., Ghommem, M., Nuhait, A.O., Hajj, M.R.: Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters. J. Sound Vib. 333, 166–177 (2014)CrossRefGoogle Scholar
  26. 26.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dyn. 68, 531–541 (2012)CrossRefGoogle Scholar
  27. 27.
    Abdelkefi, A., Nuhait, A.O.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 095029 (2013)CrossRefGoogle Scholar
  28. 28.
    Dias, J.A.C., De Marqui Jr., C., Erturk, A.: Three-degree-of-freedom hybrid piezoelectric-inductive aeroelastic energy harvester exploiting a control surface. AIAA J. 53, 394–404 (2014)CrossRefGoogle Scholar
  29. 29.
    Wu, Y., Li, D., Xiang, J., Da Ronch, A.: Piezoaeroelastic energy harvesting based on an airfoil with double plunge degrees of freedom: modeling and numerical analysis. J. Fluids Struct. 74, 111–129 (2017)CrossRefGoogle Scholar
  30. 30.
    Bibo, A., Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. 332, 5086–5102 (2013)CrossRefGoogle Scholar
  31. 31.
    Bibo, A., Daqaq, M.F.: Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator. Appl. Phys. Lett. 102, 243904 (2013)CrossRefGoogle Scholar
  32. 32.
    Bryant, M., Mahtani, R.L., Garcia, E.: Wake synergies enhance performance in aeroelastic vibration energy harvesting. J. Intell. Mater. Syst. Struct. 23, 1131–1141 (2012)CrossRefGoogle Scholar
  33. 33.
    Wu, Y., Li, D., Xiang, J.: Performance analysis and parametric design of an airfoil-based piezoaeroelastic energy harvester. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee, Florida (2015)Google Scholar
  34. 34.
    Dunn, P., John, D.: Nonlinear stall flutter and divergence analysis of cantilevered graphite/epoxy wings. AIAA J. 30, 153–162 (1992)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aeronautic Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations