Advertisement

Nonlinear Dynamics

, Volume 91, Issue 2, pp 1275–1288 | Cite as

Diverse neuronal responses of a fractional-order Izhikevich model: journey from chattering to fast spiking

  • Argha Mondal
  • Ranjit Kumar UpadhyayEmail author
Original Paper
  • 211 Downloads

Abstract

The firing activities of multiple timescale dynamics for single neurons can be treated with fractional-order derivative. It has been shown in previous studies (theoretical and experimental) that the passive properties of membranes may be considered by fractional-order dynamics as it can produce various types of memory-dependent dynamics. Spiking and bursting play major role in information processing for cortical neurons. However, it is not completely clear to what extent the dynamics of fractional-order excitable systems may redesign the properties of excitable cells. It is demonstrated that the fractional dynamics of Izhikevich neuron model is capable to exhibit various oscillations for cortical neurons such as regular spiking and various bursting patterns, mixed mode oscillations, chattering, fast spiking. It characterizes various firing modes (hence the firing frequency) better than the classical-order model. It shows the dynamical differences between the integer-order and fractional-order system. The firing frequency is increased with the decrease of fractional exponents. Further, the responses of a network of excitatory and inhibitory Izhikevich neurons with a controlled parameter set show different dynamical behavior at various fractional orders and it controls the long-term interactions.

Keywords

Izhikevich neuron model Fractional derivative Spiking–bursting Randomly coupled network 

Notes

Acknowledgements

The authors are thankful to Dr. Wondimu W. Teka (Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA) for his valuable constructive suggestions, numerical support and valuable comments for the article. This work is supported by the Council of Scientific and Industrial Research (CSIR), Govt. of India, under Grant No. 25 (0277/17/EMR-II) to the corresponding author (R. K. Upadhyay).

References

  1. 1.
    Oldham, K.B., Spanier, J.: The Fractional Calculus, vol. 17. Academic Press, New York (1974)zbMATHGoogle Scholar
  2. 2.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  3. 3.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, Cambridge (1998)zbMATHGoogle Scholar
  4. 4.
    Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Magin, R.L.: Fractional calculus in bioengineering, Part 1. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)CrossRefGoogle Scholar
  6. 6.
    Ulanovsky, N., Las, L., Farkas, D., Nelken, I.: Multiple time scales of adaptation in auditory cortex neurons. J. Neurosci. 24, 10440–10453 (2004)CrossRefGoogle Scholar
  7. 7.
    Ma, J., Xu, J.: An introduction and guidance for neurodynamics. Sci. Bull. 60, 1969–1971 (2015)CrossRefGoogle Scholar
  8. 8.
    Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)CrossRefGoogle Scholar
  9. 9.
    Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Ma, J., Xu, Y., Wu, F., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27(2), 1750030 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Yamada, W.M., Koch, C., Adams, P.R.: Multiple Channels and Calcium Dynamics, Methods in Neuronal Modeling: From Synapses to Networks. MIT Press, Cambridge (1989)Google Scholar
  12. 12.
    Zhou, Y., Ionescu, C., Tenreiro Machado, J.A.: Fractional dynamics and its applications. Nonlinear Dyn. 80, 1661–1664 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    La Camera, G., Rauch, A., Thurbon, D., Luscher, H.R., Senn, W., Fusi, S.: Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. J. Neurophysiol. 96, 3448–3464 (2006)CrossRefGoogle Scholar
  14. 14.
    Miller, K., Troyer, T.: Neural noise can explain expansive, power-law nonlinearities in neural response functions. J. Neurophysiol. 87, 653–659 (2002)CrossRefGoogle Scholar
  15. 15.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 13, 529–539 (1967)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grunwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 62, 902–917 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Magin, R.L., Ovadia, M.: Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14, 1431–1442 (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dokoumetzidis, A., Macheras, P.: Fractional kinetics in drug absorption and disposition processes. J. Pharmacokinet. Pharmacodyn. 36, 165–178 (2009)CrossRefGoogle Scholar
  20. 20.
    Petr, I., Magin, R.L.: Simulation of drug uptake in a two compartmental fractional model for a biological system. Commun. Nonlinear Sci. Numer. Simul. 16, 4588–4595 (2011)CrossRefzbMATHGoogle Scholar
  21. 21.
    Goychuk, I., Hnggi, P.: Fractional diffusion modeling of ion channel gating. Phys. Rev. E 70, 051915 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)Google Scholar
  23. 23.
    Armanyos, M., Radwan, A.: Fractional-order Fitzhugh-Nagumo and Izhikevich neuron models. In: 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), IEEE (2016)Google Scholar
  24. 24.
    Teka, W., Marinov, T.M., Santamaria, F.: Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput. Biol. 10(3), e1003526 (2014)CrossRefGoogle Scholar
  25. 25.
    Upadhyay, R.K., Mondal, A., Teka, W.W.: Fractional order excitable neural system with bidirectional coupling. Nonlinear Dyn. 87, 2219–2233 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)CrossRefzbMATHGoogle Scholar
  27. 27.
    Chen, L., Qu, J., Chai, Y., Wu, R., Qi, G.: Synchronization of a class of fractional-order chaotic neural networks. Entropy 15(8), 3265–3276 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Safdari, H., Kamali, M.Z., Shirazi, A., Khalighi, M., Jafari, G., Ausloos, M.: Fractional dynamics of network growth constrained by aging node interactions. PLoS ONE 11(5), e0154983 (2016)CrossRefGoogle Scholar
  29. 29.
    Shi, M., Wang, Z.: Abundant bursting patterns of a fractional-order Morris–Lecar neuron model. Commun. Nonlinear Sci. Numer. Simul. 19, 1956–1969 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Upadhyay, R.K., Mondal, A.: Dynamics of fractional order modified Morris–Lecar neural model. Netw. Biol. 5(3), 113–136 (2015)Google Scholar
  31. 31.
    Weinberg, S.H.: Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin–Huxley model. PLoS ONE 10, e0126629 (2015)CrossRefGoogle Scholar
  32. 32.
    Drew, P.J., Abbott, L.F.: Models and properties of power-law adaptation in neural systems. J. Neurophysiol. 96, 826–833 (2006)CrossRefGoogle Scholar
  33. 33.
    Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72, 69–79 (1994)CrossRefGoogle Scholar
  34. 34.
    Anastasio, T.J.: Nonuniformity in the linear network model of the oculomotor integrator produces approximately fractional-order dynamics and more realistic neuron behavior. Biol. Cybern. 79, 377–391 (1998)CrossRefzbMATHGoogle Scholar
  35. 35.
    Paulin, M.G., Hoffman, L.F., Assad, C.: Dynamics and the single spike. IEEE Trans. Neural Netw. 15, 987–994 (2004)CrossRefGoogle Scholar
  36. 36.
    Fairhall, A.L., Lewen, G.D., Bialek, W., de Ruyter van Steveninck, R.: Multiple timescales of adaptation in a neural code. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 124–130. MIT Press, Cambridge (2001)Google Scholar
  37. 37.
    Jun, D., Guang-jun, Z., Yong, X., Hong, Y., Jue, W.: Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cogn. Neurodyn. 8, 167–175 (2013)CrossRefGoogle Scholar
  38. 38.
    Teka, W., Stockton, D., Santamaria, F.: Power-law dynamics of membrane conductances increase spiking diversity in a Hodgkin–Huxley model. PLoS Comput. Biol. 12(3), e1004776 (2016)CrossRefGoogle Scholar
  39. 39.
    Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008)CrossRefGoogle Scholar
  40. 40.
    Hanyga, A., Magin, R.L.: A new anisotropic fractional model of diffusion suitable for applications of diffusion tensor imaging in biological tissues. Proc. R. Soc. A 470, 20140319 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Li, C., Chen, Y., Kurths, J.: Fractional calculus and its applications. Philos. Trans. R. Soc. A 371, 20130037 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Sherief, H.H., El-Sayed, A.M.A., Behiry, S.H., Raslan, W.E.: Using fractional derivatives to generalize the Hodgkin–Huxley model. In: Baleanu, D., Tenreiro Machado, A.T., Luo, A.C.J. (eds.) Fractional Dynamics and Control, pp. 275–282. Springer, New York (2012)Google Scholar
  43. 43.
    Nagy, A.M., Sweilam, N.H.: An efficient method for solving fractional Hodgkin–Huxley model. Phys. Lett. A 378, 1980–1984 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Connors, B.W., Gutnick, M.J.: Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990)CrossRefGoogle Scholar
  45. 45.
    Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233–253 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Gray, C.M., McCormick, D.A.: Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274, 109–113 (1996)CrossRefGoogle Scholar
  47. 47.
    Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10(6), 1171–1266 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations. Plasticity. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  49. 49.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Teka, W., Tabak, J., Vo, T., Wechselberger, M., Bertram, R.: The dynamics underlying pseudo-plateau bursting in a pituitary cell model. J. Math. Neurosci. 1(1), 1–23 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)CrossRefGoogle Scholar
  52. 52.
    Cole, K.S.: Electric conductance of biological systems. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. 1, pp. 107–116. Cold Spring Harbor Laboratory Press, New York (1933)Google Scholar
  53. 53.
    Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(8), 26–39 (1994)Google Scholar
  54. 54.
    Hsü, I.-D., Kazarinoff, N.D.: An applicable Hopf bifurcation formula and instability of small periodic solutions of the Field-Noyes model. J. Math. Anal. Appl. 55, 61–89 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Hsü, I.-D., Kazarinoff, N.D.: Existence and stability of periodic solutions of a third-order non-linear autonomous system simulating immune response in animals. Proc. R. Soc. Edinb. 77A, 163–175 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Teka, W.W., Upadhyay, R.K., Mondal, A.: Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics. Neural Netw. 93, 110–125 (2017)CrossRefGoogle Scholar
  57. 57.
    Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fract. 31, 1248–1255 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Moaddy, K., Radwan, A.G., Salama, K.N., Momani, S., Hashim, I.: The fractional-order modeling and synchronization of electrically coupled neuron systems. Comput. Math. Appl. 64, 3329–3339 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Applied MathematicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations