Advertisement

Nonlinear Dynamics

, Volume 91, Issue 2, pp 1001–1021 | Cite as

Synchronization control of oscillator networks using symbolic regression

  • Julien Gout
  • Markus Quade
  • Kamran Shafi
  • Robert K. Niven
  • Markus Abel
Original Paper

Abstract

Networks of coupled dynamical systems provide a powerful way to model systems with enormously complex dynamics, such as the human brain. Control of synchronization in such networked systems has far-reaching applications in many domains, including engineering and medicine. In this paper, we formulate the synchronization control in dynamical systems as an optimization problem and present a multi-objective genetic programming-based approach to infer optimal control functions that drive the system from a synchronized to a non-synchronized state and vice versa. The genetic programming-based controller allows learning optimal control functions in an interpretable symbolic form. The effectiveness of the proposed approach is demonstrated in controlling synchronization in coupled oscillator systems linked in networks of increasing order complexity, ranging from a simple coupled oscillator system to a hierarchical network of coupled oscillators. The results show that the proposed method can learn highly effective and interpretable control functions for such systems.

Keywords

Dynamical systems Synchronization control Genetic programming 

References

  1. 1.
    Gautier, N., Aider, J.-L., Duriez, T., Noack, B.R., Segond, M., Abel, M.W.: Closed-loop separation control using machine learning. J. Fluid Mech. 770, 242–441 (2015)CrossRefGoogle Scholar
  2. 2.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, G., Yu, X.: Chaos Control: Theory and Applications, vol. 292. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Haken, H.: Brain Dynamics: Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise. Springer Series in Synergetics. Springer, Berlin (2006)zbMATHGoogle Scholar
  5. 5.
    Schwalb, J.M., Hamani, C.: The history and future of deep brain stimulation. Neurotherapeutics 5(1), 3–13 (2008)CrossRefGoogle Scholar
  6. 6.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  7. 7.
    Strogatz, S.H.: Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life. Hyperion, New York (2003)Google Scholar
  8. 8.
    Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 976–988 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, Z., Cao, X., Ding, N.: Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays. IEEE Trans. Fuzzy Syst. 19(4), 745–757 (2011)CrossRefGoogle Scholar
  10. 10.
    Shokri-Ghaleh, H., Alfi, A.: Optimal synchronization of teleoperation systems via cuckoo optimization algorithm. Nonlinear Dyn. 78(4), 2359–2376 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hammond, C., Bergman, H., Brown, P.: Pathological synchronization in parkinson’s disease: networks, models and treatments. Trends Neurosci. 30(7), 357–364 (2007)CrossRefGoogle Scholar
  12. 12.
    Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. 110(6), 2005–2010 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation, North Chelmsford (2012)Google Scholar
  14. 14.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)zbMATHGoogle Scholar
  15. 15.
    Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press, Cambridge (2011)Google Scholar
  16. 16.
    Becerra, V.M.: Optimal control. Scholarpedia 3(1), 5354 (2008)CrossRefGoogle Scholar
  17. 17.
    Kirk, D.E.: Optimal Control Theory. Prentice-Hall, Upper Saddle River (1970)Google Scholar
  18. 18.
    Schöll, E., Schuster, H.G.: Handbook of Chaos Control. Wiley, New York (2008)zbMATHGoogle Scholar
  19. 19.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, London (1992)zbMATHGoogle Scholar
  20. 20.
    Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)CrossRefGoogle Scholar
  21. 21.
    Vladislavleva, E.J., Smits, G.F., Hertog, D.D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)CrossRefGoogle Scholar
  22. 22.
    Quade, M., Abel, M., Shafi, K., Niven, R.K., Noack, B.R.: Prediction of dynamical systems by symbolic regression. Phys. Rev. E 94, 012214 (2016)CrossRefGoogle Scholar
  23. 23.
    Shokri-Ghaleh, H., Alfi, A.: A comparison between optimization algorithms applied to synchronization of bilateral teleoperation systems against time delay and modeling uncertainties. Appl. Soft Comput. 24, 447–456 (2014)CrossRefGoogle Scholar
  24. 24.
    Parezanovic, V., Cordier, L., Spohn, A., Duriez, T., Noack, B.R., Bonnet, J.-P., Segond, M., Abel, M., Brunton, S.L.: Frequency selection by feedback control in a turbulent shear flow. J. Fluid Mech. 797, 247–283 (2016)CrossRefGoogle Scholar
  25. 25.
    Duriez, T., Brunton, S.L., Noack, B.R.: Machine Learning Control Taming Nonlinear Dynamics and Turbulence Volume 116 of Fluid Mechanics and Its Applications, vol. of. Springer, Cham (2017)CrossRefzbMATHGoogle Scholar
  26. 26.
    Strogatz, S.H., Wiley, D.A., Girvan, M.: The size of the sync basin. Chaos Interdiscip. J. Nonlinear Sci. 16, 015103 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Goldstine, H.H: A History of the Calculus of Variations from the 17th through the 19th Century. Springer, New York (1980).  https://doi.org/10.1007/978-1-4613-8106-8
  28. 28.
    Press, W.H.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  29. 29.
    Lewis, F.L., Syrmos, V.L.: Optimal Control. Wiley, New York (1995)Google Scholar
  30. 30.
    Bryson Jr., A.E., Ho, Y.: Applied Optimal Control. Halsted Press, New York (1975)Google Scholar
  31. 31.
    Athans, M., Falb, P.L.: Optimal Control: An Introduction to the Theory and Its Applications. Dover Publications, Mineola (2006)zbMATHGoogle Scholar
  32. 32.
    Franklin, G.F., Da Powell, J., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 7th edn. Pearson, London (2014)zbMATHGoogle Scholar
  33. 33.
    Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Grefenstette, J.J. (ed.) Proceedings of an International Conference on Genetic Algorithms and the Applications, pp. 183–187. Psychology Press, London (1985)Google Scholar
  34. 34.
    Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu, Morrisville (2008)Google Scholar
  35. 35.
    Yang, X.: Metaheuristic optimization. Scholarpedia 6(8), 11472 (2011)CrossRefGoogle Scholar
  36. 36.
    Luke, S.: Essentials of Metaheuristics, 2nd edn. Lulu, Morrisville (2013)Google Scholar
  37. 37.
    Fudenberg, D., Tirole, J.: Game theory. MIT press, London (1991)zbMATHGoogle Scholar
  38. 38.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: PPSN VI: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, Springer, pp. 849–858 (2000)Google Scholar
  39. 39.
    Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99, vol. 1. IEEE (1999)Google Scholar
  40. 40.
    Zitzler, E., Laumanns,M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. In: TIK-Report, vol. 103. Eidgenössische Technische Hochschule Zürich, Institut für Technische Informatik und Kommunikationsnetze (TIK), Zürich (2001).  https://doi.org/10.3929/ethz-a-004284029
  41. 41.
    Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011). 3-4CrossRefGoogle Scholar
  43. 43.
    Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001) (Online; Accessed 13 July 2016)Google Scholar
  44. 44.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)CrossRefzbMATHGoogle Scholar
  45. 45.
    SymPy Dev Team: SymPy: python library for symbolic mathematics (2016)Google Scholar
  46. 46.
    Quade, M., Gout, J., Abel, M.: Ambrosys/glyph: v0.3.2, June (2017)Google Scholar
  47. 47.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefGoogle Scholar
  48. 48.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)CrossRefGoogle Scholar
  49. 49.
    Kuramoto, Y.: Lecture notes in physics. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics, vol. 39, p. 420. Springer, New York (1975)CrossRefGoogle Scholar
  50. 50.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  51. 51.
    Cohen, Leon: Time Frequency Analysis: Theory and Applications, 1st edn. Prentice Hall, Upper Saddle River (1994)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Julien Gout
    • 1
    • 2
  • Markus Quade
    • 1
    • 2
  • Kamran Shafi
    • 3
  • Robert K. Niven
    • 3
  • Markus Abel
    • 1
    • 2
  1. 1.University of PotsdamPotsdamGermany
  2. 2.Ambrosys GmbHPotsdamGermany
  3. 3.School of Engineering and Information TechnologyUniversity of New South WalesCanberraAustralia

Personalised recommendations