Advertisement

Nonlinear Dynamics

, Volume 91, Issue 2, pp 957–974 | Cite as

A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications

  • Karthikeyan Rajagopal
  • Akif AkgulEmail author
  • Sajad Jafari
  • Burak Aricioglu
Original Paper

Abstract

A novel charge-controlled memcapacitor 3D chaotic oscillator with two unstable equilibriums is proposed. Various dynamic properties of the proposed system are derived and investigated to show the existence of chaotic oscillations. Fractional-order analysis of the chaotic oscillator shows that the maximum value for the largest positive Lyapunov exponent is exhibited in fractional order. Adomian decomposition method is used to discretize the fractional-order system. Field-programmable gate arrays are used to realize the proposed oscillator. In addition, random number generator is designed by employing this novel chaotic system in its fractional-order form.

Keywords

Memcapacitor Bifurcation Bicoherence Fractional order Circuit implementation FPGA RNG design 

Notes

Acknowledgements

This work was partially supported by Sakarya University Scientific Research Projects Unit under Grants 2016-09-00-008, 2016-50-01-026. It was also partially supported by Iran National Science Foundation (No. 96000815). The authors thank Mr. Soroush Dehghan and Mr. Navid Hasanzadeh for help and comments which enhanced the quality of this paper.

References

  1. 1.
    Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377(9), 699–702 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376(2), 102–108 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurc. Chaos 23(11), 1350188 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1264–1272 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barati, K., Jafari, S., Sprott, J.C., Pham, V.-T.: Simple chaotic flows with a curve of equilibria. Int. J. Bifurc. Chaos 26(12), 1630034 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jafari, S., Sprott, J.C., Molaie, M.: A simple chaotic flow with a plane of equilibria. Int. J. Bifurc. Chaos 26(06), 1650098 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jafari, S., Sprott, J.C., Pham, V.-T., Volos, C., Li, C.: Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn 86(2), 1349–1358 (2016)CrossRefGoogle Scholar
  8. 8.
    Wei, Z., Sprott, J.C., Chen, H.: Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium. Phys. Lett. A 379(37), 2184–2187 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wei, Z., Zhang, W., Yao, M.: On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system. Nonlinear Dyn 82(3), 1251–1258 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, L.: 3-scroll and 4-scroll chaotic attractors generated from a new 3-d quadratic autonomous system. Nonlinear Dyn 56(4), 453–462 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Munoz-Pacheco, J.M., Tlelo-Cuautle, E., Toxqui-Toxqui, I., Sanchez-Lopez, C., TrejoGuerra, R.: Frequency limitations in generating multi-scroll chaotic attractors using cfoas. Int. J. Electron. 101(11), 1559–1569 (2014)CrossRefGoogle Scholar
  12. 12.
    Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nunez-Perez, J.C.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul 27(1), 66–80 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lai, Q., Chen, S.: Generating multiple chaotic attractors from sprott b system. Int. J. Bifurc. Chaos 26(11), 1650177 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn 88(4), 2589–2608 (2017)CrossRefGoogle Scholar
  15. 15.
    Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1485–1491 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224(8), 1493–1506 (2015)CrossRefGoogle Scholar
  17. 17.
    Sprott, J.C.: Symmetric time-reversible flows with a strange attractor. Int. J. Bifurc. Chaos 25(05), 1550078 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sprott, J.C.: Simplest chaotic flows with involutional symmetries. Int. J. Bifurc. Chaos 24(01), 1450009 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Brummitt, C.D., Sprott, J.C.: A search for the simplest chaotic partial differential equation. Phys. Lett. A 373(31), 2717–2721 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gottlieb, H.P.W., Sprott, J.C.: Simplest driven conservative chaotic oscillator. Phys. Lett. A 291(6), 385–388 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68(8), 758–763 (2000)CrossRefGoogle Scholar
  22. 22.
    Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  24. 24.
    Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A gallery of chaotic oscillators based on HP memristor. Int. J. Bifurc. Chaos 23(05), 1330015 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Barboza, R., Chua, L.O.: The four-element chua’s circuit. Int. J. Bifurc. Chaos 18(04), 943–955 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bao, B.-C., Liu, Z., Xu, J.-P.: Dynamical analysis of memristor chaotic oscillator (2010). http://wulixb.iphy.ac.cn/EN/abstract/abstract17028.shtml
  27. 27.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc IEEE 64(2), 209–223 (1976)Google Scholar
  28. 28.
    Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on hewlett-packard memristor. Chaos Interdiscip. J. Nonlinear Sci. 22(2), 023136 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hong, Q.-H., Li, Z.-J., Zeng, J.-F., Zeng Y.-C.: Design and simulation of a memristor chaotic circuit based on current feedback op amp (2014)Google Scholar
  30. 30.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(05), 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Corinto, F., Krulikovskyi, V., Haliuk, S.D.: Memristor-based chaotic circuit for pseudo-random sequence generators. In: Electrotechnical Conference (MELECON), 2016 18th Mediterranean, pp. 1–3. IEEE (2016)Google Scholar
  32. 32.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods, vol. 5. World Scientific, Singapore (2016)zbMATHGoogle Scholar
  33. 33.
    Zhou, Y., Wang, J.R., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016)CrossRefGoogle Scholar
  34. 34.
    Diethelm, Kai: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  35. 35.
    Aghababa, M.P.: Robust finite-time stabilization of fractional-order chaotic systems based on fractional lyapunov stability theory. J. Comput. Nonlinear Dyn. 7(2), 021010 (2012)CrossRefGoogle Scholar
  36. 36.
    Boroujeni, E.A., Momeni, H.R.: Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Signal Process. 92(10), 2365–2370 (2012)CrossRefGoogle Scholar
  37. 37.
    Zhang R., Gong J. (2014) Synchronization of the fractional-order chaotic system via adaptive observer. Syst. Sci. Control Eng. Open Access J. 2(1):751–754Google Scholar
  38. 38.
    Rajagopal, K., Guessas, L., Karthikeyan, A., Srinivasan, A., Adam, G.: Fractional order memristor no equilibrium chaotic system with its adaptive sliding mode synchronization and genetically optimized fractional order pid synchronization. Complexity 2017, (2017)Google Scholar
  39. 39.
    Rajagopal, K., Karthikeyan, A., Srinivasan, A.K.: FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87(4), 2281–2304 (2017)CrossRefGoogle Scholar
  40. 40.
    Rajagopal, K., Guessas, L., Vaidyanathan, S., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FIGA implementation of a novel hyperchaotic system and its synchronization using adaptive sliding mode control and genetically optimized PID control. Math. Probl. Eng. 2017, 7307452 (2017) .  https://doi.org/10.1155/2017/7307452
  41. 41.
    Rajagopal, K., Karthikeyan, A., Duraisamy, P.: Hyperchaotic chameleon: fractional order FPGA implementation. Complexity (in press) https://www.hindawi.com/journals/complexity/aip/8979408
  42. 42.
    Tlelo-Cuautle, E., Pano-Azucena, A.D., Rangel-Magdaleno, J.J., Carbajal-Gomez, V.H., Rodriguez-Gomez, G.: Generating a 50-scroll chaotic attractor at 66 mhz by using fpgas. Nonlinear Dyn. 85(4), 2143–2157 (2016)CrossRefGoogle Scholar
  43. 43.
    Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., Bahi, J. M.: (2016) Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 63(3):401–412Google Scholar
  44. 44.
    Dong, E., Liang, Z., Du, S., Chen, Z.: Topological horseshoe analysis on a four-wing chaotic attractor and its fpga implement. Nonlinear Dyn. 83(1–2), 623–630 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Tlelo-Cuautle, E., Carbajal-Gomez, V.H., Obeso-Rodelo, P.J., Rangel-Magdaleno, J.J., Nunez-Perez, J.C.: FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 82(4), 1879–1892 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Rashtchi, V., Nourazar, M.: FPGA implementation of a real-time weak signal detector using a duffing oscillator. Circuits Syst. Signal Process. 34(10), 3101–3119 (2015)CrossRefGoogle Scholar
  47. 47.
    Wang, G.-Y., Jin, P.-P., Wang, X.-W., Shen, Y.-R., Yuan, F., Wang, X.-Y.: A flux-controlled model of meminductor and its application in chaotic oscillator. Chin. Phys. B 25(9), 090502 (2016)CrossRefGoogle Scholar
  48. 48.
    Pershin, Y.V., Di Ventra, M.: Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 47(4), 243–244 (2011)CrossRefGoogle Scholar
  49. 49.
    Yu, D.S., Liang, Y., Chen, H., Iu, H.H.C.: Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans. Circuits Syst. II Exp. Briefs 60(4), 207–211 (2013)Google Scholar
  50. 50.
    Fitch, A.L., Iu, H.H.C., Yu, D.S.: Chaos in a memcapacitor based circuit. In: Circuits and Systems (ISCAS), 2014 IEEE International Symposium on, pp. 482–485. IEEE (2014)Google Scholar
  51. 51.
    Rajagopal, K., Akgul, A., Jafari, S., Karthikeyan, A., Koyuncu, I.: Chaotic chameleon: Dynamic analyses, circuit implementation, fpga design and fractionalorder form with basic analyses. Chaos Solitons Fractals 103, 476–487 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Pham, V.-T., Volos, C., Jafari, S., Wang, X., Vaidyanathan, S.: Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron. Adv. Mater. Rapid. Commun. 8(11–12), 1157–1163 (2014)Google Scholar
  53. 53.
    Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59(3), 358–363 (2016)CrossRefGoogle Scholar
  54. 54.
    Pham, V.-T., Vaidyanathan, S., Volos, C.K., Jafari, S., Kuznetsov, N.V., Hoang, T.M.: A novel memristive time-delay chaotic system without equilibrium points. Eur. Phys. J. Spec. Top. 225(1), 127–136 (2016)CrossRefGoogle Scholar
  55. 55.
    Wei, Z., Pehlivan, I.: Chaos, coexisting attractors, and circuit design of the generalized sprott c system with only two stable equilibria. Optoelectron. Adv. Mater. Rapid Commun. 6(7–8), 742–745 (2012)Google Scholar
  56. 56.
    Shahzad, M., Pham, V.-T., Ahmad, M.A., Jafari, S., Hadaeghi, F.: Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1637–1652 (2015)CrossRefGoogle Scholar
  57. 57.
    Kengne, J., Njitacke, Z.T., Negou, A.N., Tsostop, M.F., Fotsin, H.B.F.: Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. Int. J. Bifurc. Chaos 26(05), 1650081 (2016)CrossRefzbMATHGoogle Scholar
  58. 58.
    Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., Hu, Y.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86(3), 1711–1723 (2016)CrossRefGoogle Scholar
  59. 59.
    Bao, B.-C., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52(12), 1008–1010 (2016)CrossRefGoogle Scholar
  60. 60.
    Bao, B.C., Bao, H., Wang, N., Chen, M., Xu, Q.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94, 102–111 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Bao, B., Jiang, T., Wang, G., Jin, P., Bao, H., Chen, M.: Two-memristorbased chuas hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 89, 1157 (2017).  https://doi.org/10.1007/s11071-017-3507-0 CrossRefGoogle Scholar
  62. 62.
    Wang G, Shi C, Wang X, Yuan F.: Coexisting oscillation and extreme multistability for a memcapacitor-based circuit. Math. Probl. Eng. 2017, 6504969 (2017).  https://doi.org/10.1155/2017/6504969
  63. 63.
    Wang, G., Jiang, S., Wang, X., Shen, Y., Yuan, F.: A novel memcapacitor model and its application for generating chaos. Math. Probl. Eng. 2016, (2016)Google Scholar
  64. 64.
    Leenaerts, D.M.W.: Higher-order spectral analysis to detect power-frequency mechanisms in a driven chua’s circuit. Int. J. Bifurc. Chaos 7(06), 1431–1440 (1997)CrossRefzbMATHGoogle Scholar
  65. 65.
    Pradhan, C., Jena, S.K., Nadar, S.R., Pradhan, N.: Higher-order spectrum in understanding nonlinearity in EEG rhythms. Comput. Math. Methods Med. 2012, 206857 (2012).  https://doi.org/10.1155/2012/206857
  66. 66.
    Pezeshki, C., Elgar, S., Krishna, R.C.: Bispectral analysis of possessing chaotic motion. J. Sound Vib. 137(3), 357–368 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Li, C., Pehlivan, I., Sprott, J.C., Akgul, A.: A novel four-wing strange attractor born in bistability. IEICE Electron. Exp. 12(4), 1–12 (2015)Google Scholar
  68. 68.
    Akgul, A., Calgan, H., Koyuncu, I., Pehlivan, I., Istanbullu, A.: Chaosbased engineering applications with a 3d chaotic system without equilibrium points. Nonlinear Dyn. 84(2), 481–495 (2016)CrossRefGoogle Scholar
  69. 69.
    Akgul, A., Pehlivan, I.: A new three-dimensional chaotic system without equilibrium points, its dynamical analyses and electronic circuit application. Tech. Gazette 23(1), 209–214 (2016)Google Scholar
  70. 70.
    Akgul, A., Moroz, I., Pehlivan, I., Vaidyanathan, S.: A new fourscroll chaotic attractor and its engineering applications. Optik Int. J. Light Electron Opt. 127(13), 5491–5499 (2016)CrossRefGoogle Scholar
  71. 71.
    Akgul, A., Hussain, S., Pehlivan, I.: A new three-dimensional chaotic system, its dynamical analysis and electronic circuit applications. Optik Int. J. Light Electron Opt. 127(18), 7062–7071 (2016)CrossRefGoogle Scholar
  72. 72.
    Jafari, M.A., Mliki, E., Akgul, A., Pham, V.-T., Kingni, S.T., Wang, X., Jafari, S.: Chameleon: the most hidden chaotic flow. Nonlinear Dyn. 88, 2303 (2017).  https://doi.org/10.1007/s11071-017-3378-4 MathSciNetCrossRefGoogle Scholar
  73. 73.
    Hu, W., Akgul, A., Li, C., Zheng, T., Li, P.: A switchable chaotic oscillator with two amplitude-frequency controllers. J. Circuits Syst. Comput. 26(10), 1750158 (2017)CrossRefGoogle Scholar
  74. 74.
    Wei, Z., Moroz, I., Sprott, J.C., Akgul, A., Zhang, W.: Hidden hyperchaos and electronic circuit application in a 5d self-exciting homopolar disc dynamo. Chaos Interdiscip. J. Nonlinear Sci. 27(3), 033101 (2017)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Kai, G., Zhang, W., Wei, Z.C., Wang, J.F., Akgul, A.: Hopf bifurcation, positively invariant set, and physical realization of a new four-dimensional hyperchaotic financial system. Math. Probl. Eng. 2017, (2017)Google Scholar
  76. 76.
    Volos, C., Akgul, A., Pham, V.-T., Stouboulos, I., Kyprianidis, I.: A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn. 89, 1047 (2017).  https://doi.org/10.1007/s11071-017-3499-9 CrossRefGoogle Scholar
  77. 77.
    Akgul, A., Li, C., Pehlivan, I.: Amplitude control analysis of a four-wing chaotic attractor, its electronic circuit designs and microcontroller-based random number generator. J. Circuits Syst. Comput. 26, 1750190 (2017).  https://doi.org/10.1142/S0218126617501900 CrossRefGoogle Scholar
  78. 78.
    Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 13(7), 17–43 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Sun, H.H., Abdelwahab, A., Onaral, B.: Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control 29(5), 441–444 (1984)CrossRefzbMATHGoogle Scholar
  81. 81.
    Tavazoei, M.S., Haeri, M.: Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems. IET Signal Process. 1(4), 171–181 (2007)CrossRefGoogle Scholar
  82. 82.
    Shao-Bo He, Ke-Hui Sun, and Hui-Hai Wang. Solution of the fractional-order chaotic system based on adomian decomposition algorithm and its complexity analysis (2014). http://wulixb.iphy.ac.cn/EN/abstract/abstract57588.shtml
  83. 83.
    Caponetto, R., Fazzino, S.: An application of adomian decomposition for analysis of fractional-order chaotic systems. Int. J. Bifurc. Chaos 23(03), 1350050 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    He, S., Sun, K., Wang, H.: Complexity analysis and dsp implementation of the fractional-order lorenz hyperchaotic system. Entropy 17(12), 8299–8311 (2015)CrossRefGoogle Scholar
  85. 85.
    Bratley, P., Fox, B.L., Schrage, L.E.: A Guide to Simulation. Springer, Berlin (2011)zbMATHGoogle Scholar
  86. 86.
    Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Berlin (2012)Google Scholar
  87. 87.
    Akgul, A., Kacar, S., Aricioglu, B., Pehlivan, I.: Text encryption by using one-dimensional chaos generators and nonlinear equations. In: Electrical and Electronics Engineering (ELECO), 2013 8th International Conference on, pp. 320–323. IEEE (2013)Google Scholar
  88. 88.
    Tuncer, T., Avaroglu, E., Turk, M., Ozer, A.B.: Implementation of nonperiodic sampling true random number generator on FPGA. J. Microelectron. Electron. Compon. Mater. 44(4), 296–302 (2014)Google Scholar
  89. 89.
    Vasyltsov, I., Hambardzumyan, E., Kim, Y.-S., Karpinskyy, B.: Fast digital trng based on metastable ring oscillator. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 164–180. Springer (2008)Google Scholar
  90. 90.
    Ergun, S., Ozoguz, S: A chaos-modulated dual oscillator-based truly random number generator. In: Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, pp. 2482–2485. IEEE (2007)Google Scholar
  91. 91.
    Yalcin ME, Suykens JAK, Vandewalle J (2004) True random bit generation from a double-scroll attractor. IEEE Trans. Circuits Syst. I Regul. Pap. 51(7):1395–1404Google Scholar
  92. 92.
    Stojanovski T, Kocarev L (2001) Chaos-based random number generators-part i: analysis [cryptography]. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(3):281–288Google Scholar
  93. 93.
    Stojanovski T., Pihl J., Kocarev L. (2001) Chaos-based random number generators-Part ii: practical realization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(3):382–385Google Scholar
  94. 94.
    Callegari, S., Rovatti, R., Setti, G.: Embeddable adc-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos. IEEE Trans. Signal Process. 53(2), 793–805 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    Çavuşoǧlu, Ü., AkgÜl, A., Kaçar, S., Pehlivan, I., Zengin, A.: A novel chaos-based encryption algorithm over TCP data packet for secure communication. Secur. Commun. Netw 9(11), 1285–1296 (2016)CrossRefGoogle Scholar
  96. 96.
    Rukhin, A., Soto, J., Nechvatal, J., Barker, E., Leigh, S., Levenson, M., Banks, D., Heckert, A., Dray, J., Vo, S. et al.: Statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST special publication. (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electrical and Communication EngineeringThe PNG University of TechnologyLaePapua New Guinea
  2. 2.Department of Electrical and Electronics Engineering, Faculty of TechnologySakarya UniversitySakaryaTurkey
  3. 3.Biomedical Engineering DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations