Nonlinear Dynamics

, Volume 91, Issue 1, pp 591–607 | Cite as

Optimal control of a wind turbine with digital fluid power transmission

  • Niels H. Pedersen
  • Per Johansen
  • Torben O. Andersen
Original Paper


Digital fluid power (DFP) technology may lead to a paradigm shift in large-scale transmission systems in, e.g., wind and wave energy. Therefore, the development of applicable control algorithms is of major importance, but is complicated by the non-smooth behavior of the DFP displacement machines. The power throughput of a full stroke operated digital displacement machine is quantized by the number of pressure chambers. The dynamics of each pressure chamber may be described by highly nonlinear continuous differential equations, whereas the input is discretely updated and binary (active or inactive). This paper contributes with a feedback control strategy for a digital displacement machine, where the binary inputs are handled by a pulse density modulator. The paper presents a linearization method of handling the many nonlinearities and thereby enabling the use of Discrete Linear Time Invariant (DLTI) control theory. The control strategy is validated for control of a digital fluid power wind turbine transmission, where both a deterministic and a stochastic optimal controllers are synthesized. The study is based on the NREL 5-MW reference wind turbine, where its model is combined with a nonlinear model of the DFP transmission and full-field flow wind profiles are used for a realistic performance evaluation scenario. By simulation, it is found that the performance of the optimal controllers using the DFP transmission is similar to that of the NREL controller using a conventional transmission.


Optimal control Wind turbine Digital displacement Fluid power Hydrostatic transmission 



This research was funded by the Danish Council for Strategic Research through the HyDrive project at Aalborg University, at the Department of Energy Technology (case no. 1305-00038B).


  1. 1.
    Armstrong, B.S.R., Yuan, Q.: Multi-level control of hydraulic gerotor motor and pumps. In: Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA (June 2006)Google Scholar
  2. 2.
    Chapple, P., Lindholdt, P.N., Larsen, H.B.: An approach to digital distributor valves in low speed pumps and motors. ASME/BATH 2014 Symposium on Fluid Power and Motion Control, Bath, United Kingdom (2014)Google Scholar
  3. 3.
    Commission, I.E.: International Standard, IEC 61400-1 3rd edition (2005)Google Scholar
  4. 4.
    Das, S., Pan, I.: Fractional Order Signal Processing: Introductory Concepts and Applications. Springer, Berlin. ISBN 978-3-642-23117-9 (2012)Google Scholar
  5. 5.
    Dolan, B., Aschemann, H.: Control of a wind turbine with a hydrostatic transmission an extended linearisation approach. In: 17th International Conference on Methods and Models in Automation and Robotics (2012)Google Scholar
  6. 6.
    Han, H.Y., Wang, J., Huang, Q.X.: Analysis of unsymmetrical valve controlling unsymmetrical cylinder stability in hydraulic leveler. Nonlinear Dyn. 70, 1199–1203 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hansen, A.H., Pedersen, H.C.: Energy cost of avoiding pressure oscillations in a discrete fluid power force system. In: Proceedings of the ASME/BATH 2015 Symposium on Fluid Power and Motion Control, FPMC, American Society of Mechanical Engineers, pp. 1–10 (2015)Google Scholar
  8. 8.
    Hansen, A.H., Pedersen, H.C.: Optimal configuration of discrete fluid power force system utilised in the pto for wecs. Ocean Eng. 117(OE3694), 88–98 (2016)CrossRefGoogle Scholar
  9. 9.
    Hansen, A.H., Pedersen, H.C.: Reducing pressure oscillations in discrete fluid power systems. Proc. Part I J. Syst. Control Eng. 230(10), 1093–1105 (2016)Google Scholar
  10. 10.
    Heikkila, M., Linjama, M.: Displacement control of a mobile crane using digital hydraulic power management system. Mechatronics 23(4), 452–461 (2013)CrossRefGoogle Scholar
  11. 11.
    Hoven, V.D.: Power spectrum of horizontal wind speed in the frquency range from 0.0007 to 900 cycles per hour. J. Atmos. Sci. 14, 160–164 (1957)Google Scholar
  12. 12.
    Jin, Y., Luo, X.: Stochastic optimal active control of a half-car nonlinear suspension under random road excitation. Nonlinear Dyn. 72, 185–195 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Johansen, P., Roemer, D.B., Pedersen, H.C., Andersen, T.O.: Delta-sigma modulated displacement of a digital fluid power pump. In: Proceedings of the 7th Workshop on Digital Fluid Power. LCM GmbH. s. The Seventh Workshop on Digital Fluid Power, Linz, Austria, pp. 1–9. (2015)Google Scholar
  14. 14.
    Johansen, P., Roemer, D.B., Pedersen, H.C., Andersen, T.O.: Discrete linear time invariant analysis of digital fluid power pump flow control. J. Dyn. Syst. Measurement and Control Trans. ASME 139(10), 101007 (2017)CrossRefGoogle Scholar
  15. 15.
    Jonkman, B.J.: TurbSim Users Guide: Version 1.50, National Renewable Energy Laboratory, US Department of Energy (2009)Google Scholar
  16. 16.
    Jonkman, B.J.: Overview of the TurbSim Stochastic Inflow Turbulence Simulator, National Renewable Energy Laboratory. US, Department of Energy (2009)Google Scholar
  17. 17.
    Jonkman, J.M., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-mw reference wind turbine for offshore system development (2009)Google Scholar
  18. 18.
    Jrf, A., Minav, T., Pietola, M.: Nonsymmetrical flow compensation using hydraulic accumulator in direct driven differential cylinder application. In: Proceedings of the 9th FPNI PhD Symposium on Fluid Power, Florianpolis, Brazil (2016)Google Scholar
  19. 19.
    Kaimal, J.C., Wyngaard, J.C., Izumi, Y., Cote, O.R.: Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98, 563–589 (1972)CrossRefGoogle Scholar
  20. 20.
    Kalbat, A.: Linear quadratic gaussian (lqg) control of wind turbines. In: Proceddings of the 3rd International Conference on Electric Power and Energy Conversion Systems (2013)Google Scholar
  21. 21.
    Laguna, A.J., Diepeveen, N.F.B., van Wingerden, J.W.: Analysis of dynamics of fluid power drive-trains for variable speed wind turbines: parameter study. IET Renew. Power Gener. 8(4), 398–410 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Ehsan, W.R., Salter, S.: Modeling of digital-displacement pump-motors and their application as hydraulic drives for nonuniform loads. J. Dyn. Syst. Measurement and Control 122, 210–215 (2000)CrossRefGoogle Scholar
  23. 23.
    Mateescu, R., Pintea, A., Stefanoiu, D.: Discrete-time lqg control with disturbance rejection for variable speed wind turbines. In: Proceedings of the 1st International Confeference on System and Computer Science, Lille, France, pp. 1–6. (2012)Google Scholar
  24. 24.
    Ming, Z., Hong, N., Rupeng, Z.: Stochastic optimal control of flexible aircraft taxiing at constant or variable velocity. Nonlinear Dyn. 62, 485–497 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mitsubishi Heavy Industries, L.: Wind turbine generator and tidal current generator and operation method thereof, Patent: US 20120104752 A1, 2012 (2013)Google Scholar
  26. 26.
    Mitsubishi Heavy Industries, L.: Power generating apparatus of renewable energy type and operation method thereof, Patent: US 20130214537 (2013)Google Scholar
  27. 27.
    Mitsubishi Heavy Industries, L.: Power generating apparatus of renewable energy type and method of operating the same, Patent: US 20130307493 A1 (2013)Google Scholar
  28. 28.
    Mitsubishi Heavy Industries, L.: Energy extraction device, group of energy extraction devices and operating methods, Patent: US 20130221676 A1 (2013)Google Scholar
  29. 29.
    Mitsubishi Heavy Industries, L.: Hydraulic transmission, power generating apparatus of renewable energy type, and operation method thereof, Patent: EP 2899432 A2 (2015)Google Scholar
  30. 30.
    Mitsubishi Heavy Industries, L.: Hydraulic transmission comprising variable displacement pump or motor operable with discontinuous range of displacements, Patent: EP 2649348 A1 (2015)Google Scholar
  31. 31.
    Noergaard, C., Bech, M.M., Roemer, D.B., Schmidt, L.: Experimental validation of modelled fluid forces in fast switching hydraulic on/off valves. In: Proceedings of the 2015 International Conference on fluid power and Mechatronics (FPM), IEEE Press, pp. 68–73 (2015)Google Scholar
  32. 32.
    Payne, G.S., Kiprakis, A.E., Ehsan, M., Rampen, W., Chick, J.P., Wallace, A.R.: Efficiency and dynamic performance of digital displacement hydraulic transmission in tidal current energy converters. J. Power and Energy Proc. IMechE Part A 221, 207–218 (2007)CrossRefGoogle Scholar
  33. 33.
    Payne, G.S., Stein, U.P.P., Ehsan, M., Caldwell, N.J., Rampen, W.H.S.: Potential of digital displacement hydraulics for wave energy conversion. In: Proceedings of the 6th European Wave and TIdal Energy Conference, Glasgow UK. (2005)Google Scholar
  34. 34.
    Pedersen, H.C., Hansen, R.H., Hansen, A.H., Andersen, T.O., Bech, M.M.: Design of full scale wave simulator for testing power take off systems for wave energy converters. Int. J. Mar. Energy 13, 130–156 (2016)CrossRefGoogle Scholar
  35. 35.
    Pintea, A., Christov, N., Borne, P., Popescu, D., Badea, A.: Optimal control of variable speed wind turbines. In: The 19th Mediterranean Conference on Control and Automation, Corfu, Greece (2011)Google Scholar
  36. 36.
    Rampen, W.: Gearless transmissions for large wind turbines—the history and future of hydraulic drives. Artemis IP Ltd, Scotland Artemis IP Ltd., ScotlandGoogle Scholar
  37. 37.
    Rampen, W.: The development of digital displacement technology. In: Proceedings of Bath/ASME FPMC Symposium (2010)Google Scholar
  38. 38.
    Reiss, J.D.: Understanding sigma-delta modulation: The solved and unsolved issues. J. Audio Eng. Soc. 56(1/2), 49–64 (2008)Google Scholar
  39. 39.
    Roemer, D.B.: Design and optimization of fast switching valves for large scale digital hydraulic motors. PhD thesis, Department of Energy Technology, Aalborg University (2014)Google Scholar
  40. 40.
    Roemer, D.B., Johansen, P., Pedersen, H.C., Andersen, T.O.: Design method for fast switching seat valves for digital displacement machines. In: Proceedings of the 8th FPNI PhD Symposium on Fluid Power (2014)Google Scholar
  41. 41.
    Roemer, D.B., Johansen, P., Pedersen, H.C., Andersen, T.O.: Optimum design of seat region in valves suitable for digital displacement machines. Int. J. Mechatron. Autom. 4(2), 116–126 (2014)CrossRefGoogle Scholar
  42. 42.
    Roemer, D.B., Johansen, P., Pedersen, H.C., Andersen, T.O.: Fluid stiction modeling for quickly separating plates considering the liquid tensile strength. J. Fluids Eng. 137(6), 061205 (2015)CrossRefGoogle Scholar
  43. 43.
    Roemer, D.B., Johansen, P., Pedersen, H.C., Andersen, T.O.: Optimum design of moving coil actuator for fast-switching valves in digital hydraulic pumps and motors. IEEE ASME Trans. Mechatron. 20(6), 2761–2770 (2015)CrossRefGoogle Scholar
  44. 44.
    Roemer, D.B., Johansen, P., Schmidt, L., Andersen, T.O.: Modeling of movement-induced and flow induced fluid forces in fast switching valves. In: Proceedings of the 2015 International Conference on Fluid Power and Mechatronics (FPM). IEEE press, pp. 978–983 (2015)Google Scholar
  45. 45.
    Salter, S.H., Taylor, J.R.M., Caldwell, N.J.: Power conversion mechanisms for wave energy. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 216(1), 1–27 (2002)CrossRefGoogle Scholar
  46. 46.
    Scheidl, R., Manhartsgruber, B.: On the dynamic behavior of servo-hydraulic drives. Nonlinear Dyn. 17, 247–268 (1998)CrossRefzbMATHGoogle Scholar
  47. 47.
    Scheidl, R., Manhartsgruber, B.: State of the art in hydraulic switching control—componets, systems, applications. In: Proceedings of the 9th Scandinavian International Conference on Fluid Power (2005)Google Scholar
  48. 48.
    Schmidt, L., Roemer, D.B., Pedersen, H.C., Andersen, T.O.: Speed-variable switched differential pump system for direct operation of hydraulic cylinders. In: Proceedings of ASME/BATH 2015 Symposium on Fluid Power and Motion Control, American Society of Mechanical Engineers (2015)Google Scholar
  49. 49.
    Sniegucki, M., Gottfried, M., Klingauf, U.: Optimal control of digital hydraulic drives using mixed-integer quadratic programming. In: 9th IFAC Symposium on Nonlinear Control Systems (2013)Google Scholar
  50. 50.
    Song, X.: Modeling an active vehicle suspension system with application of digital displacement pump motor. In: Proceedings of the ASME 2008 International Design Engineering Techical Conference/Computers and Information in Enegineering Conference, Brooklyn - New York, Vol. 5, pp. 749–753 (2008)Google Scholar
  51. 51.
    Tahavori, M., Leth, J., Kallese, C., Wisniewski, Rafael: Optimal control of nonlinear hydraulic networks in the presence of disturbance. Nonlinear Dyn. 75, 539–548 (2013)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Vepa, R.: Dynamic Modeling, Simulation and Control of Energy Generation. Springer, Berlin. ISBN 978-1-4471-5400-6 (2013)Google Scholar
  53. 53.
    Wadsley, L.: Optimal system solutions enabled by digital pumps. International Exposition for Power Transmission, Las Vegas (2011)Google Scholar
  54. 54.
    Wang, F., Stelson, K.A.: Model predictive control for power optimization in a hydrostatic wind turbine. In: 13th Scandinavian International Conference on Fluid Power, Linkping, Sweden (2013)Google Scholar
  55. 55.
    Wilfong, G., Batdorff, M., Lumkes, J.: Design and dynamic analysis of high speed on/off poppet valves for digital pump/motors. In: Proceedings of the 6th FPNI-PhD Symposium (2010)Google Scholar
  56. 56.
    Wilfong, G., Holland, M., Lumkes, J.: Design and analysis of pilot operated high speed on/off valves for digital pump/motors. In: Proceedings of the 52nd National Conference on Fluid Power (2011)Google Scholar
  57. 57.
    Winkler, B.: Development of a fast low-cost switching valve for big flow rates. In: Proceedings of the 3rd FPNI PhD symposium on Fluid Power (2004)Google Scholar
  58. 58.
    Winkler, B., Ploeckinger, A., Scheidl, R.: Components for digital and swithcing hydraulics. In: Proceedings of 1st Workshop on Digital Fluid Power (2008)Google Scholar
  59. 59.
    Winkler, B., Scheidl, R.: Optimization of a fast switching valve for big flow rates. In: Proceedings of the Bath Workshop on Power Transmission and Motion Control (2006)Google Scholar
  60. 60.
    Zhu, Y., Jiang, W.L., Kong, X.D., Zheng, Z.: Study on nonlinear dynamics characteristics of electrohydraulic servo system. Nonlinear Dyn. 80, 723–737 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Fluid Power and Mechatronic Systems, Department of Energy TechnologyAalborg UniversityAalborgDenmark

Personalised recommendations