Advertisement

Nonlinear Dynamics

, Volume 91, Issue 1, pp 459–473 | Cite as

Modeling, control and analysis of a curved feet compliant biped with HZD approach

  • S. D. Yazdi-Mirmokhalesouni
  • M. A. SharbafiEmail author
  • M. J. Yazdanpanah
  • M. Nili-Ahmadabadi
Original Paper
  • 268 Downloads

Abstract

Bipedal walking with hybrid and nonlinear dynamics is a complex control problem. In this paper, a new model of bipedal walker with compliant legs and curved feet is developed and controlled using hybrid zero dynamics (HZD) controller. We analyze the effect of foot design in generating stable gaits characteristics regarding robustness and efficiency. For this, HZD is employed for the first time in a model in which the unactuated degrees of freedom are higher than actuated ones. Compliant legs and curved feet are two design features that can be employed to reduce energy consumption and to mimic human gait characteristics. In addition to these mechanical properties, optimizing the virtual constraints through coefficients of the Bezier polynomials supports increasing the stability margin and efficiency. With that, we benefit from both design and control to improve gait characteristics. The results conform with optimal foot curvature parameters, found in human experiments with and without prosthetic shoes. Finally, robustness of the presented controller against parameter uncertainties and external perturbations is investigated.

Keywords

HZD control Hybrid invariance Poincare map Curved feet 

References

  1. 1.
    Raibert, M. H.: Legged robots that balance. MIT press (1986)Google Scholar
  2. 2.
    Vukobratovic, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)CrossRefGoogle Scholar
  3. 3.
    Aoustin, Y., Formalsky, A.M.: In: International Workshop on Robot Motion and Control (1999)Google Scholar
  4. 4.
    Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46(1), 51–64 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–68 (1990)CrossRefGoogle Scholar
  6. 6.
    Collins, S., Wisse, M., Ruina, A.: A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20(7), 607–615 (2001)CrossRefGoogle Scholar
  7. 7.
    Asano, F., Lue, Z.W.: In: IEEE International Conference on Robotics and Automation (2007)Google Scholar
  8. 8.
    Kinugasa, T., Chevallereau, C., Aoustin, Y., Yoshida, K.: Effect of circular arc feet on a control law for a biped. Robotica 27(4), 621–632 (2008)CrossRefGoogle Scholar
  9. 9.
    Bauer, F., Romer, U., Fidlin, A., Seemann, W.: Optimization of energy efficiency of walking bipedal robots by use of elastic couplings in the form of mechanical springs. Nonlinear Dyn. 83(3), 1275–1301 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ahmadi, M., Buehler, M.: Stable control of a simulated one-legged running robot with hip and leg compliance. IEEE Trans. Robot. Autom. 13(1), 96–104 (1997)CrossRefGoogle Scholar
  11. 11.
    Hansen, A.H., Childress, D.S., Knox, E.H.: Roll-over shapes of human locomotor systems: effects of walking speed. Clin. Biomech. 19, 407–414 (2004)CrossRefGoogle Scholar
  12. 12.
    Curtze, C., Hof, A.L., Van Keeken, H.G., Halbertsma, J.P.K., Postema, K., Otten, B.: Comparative roll-over analysis of prosthetic feet. J. Biomech. 42, 1746–1753 (2009)CrossRefGoogle Scholar
  13. 13.
    Whittington, B.R., Thele, D.G.: A simple mass-spring model with roller feet can induce the ground reactions observed in human walking. J. Biomech. Eng. 131(1), 1746–1753 (2009)CrossRefGoogle Scholar
  14. 14.
    Adamczyk, P.G., Collins, S.H., Kuo, A.D.: The advantages of a rolling foot in human walking. J. Exp. Biol. 209(20), 3953 (2006)CrossRefGoogle Scholar
  15. 15.
    Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor & Francis, CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  16. 16.
    Sreenath, K., Park, H. W., Poulakakis, I., & Grizzle, J. W.: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30(9), 1170–1193 (2011)Google Scholar
  17. 17.
    Morris, B., Grizzle, J.W.: Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans. Autom. Control 54(8), 1751 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Poulakakis, I., Grizzle, J.W.: The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper. IEEE Trans. Autom. Control 54(8), 1779 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Plestan, F., Grizzle, J.W., Westervelt, E.R., Abba, G.: Stable walking of a 7-DOF biped robot. IEEE Trans. Robot. Autom. 19(4), 653 (2003)CrossRefGoogle Scholar
  20. 20.
    Martin, A.E., Post, D.C., Schmiedeler, J.P.: Stable walking of a 7-DOF biped robot. Int. J. Robot. Res. 33(12), 1530–1543 (2014)CrossRefGoogle Scholar
  21. 21.
    Martin, A.E., Post, D.C., Schmiedeler, J.P.: Design and experimental implementation of a hybrid zero dynamics-based controller for planar bipeds with curved feet. Int. J. Robot. Res. 33(7), 988–1005 (2014)CrossRefGoogle Scholar
  22. 22.
    Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318(5853), 1088–1093 (2007)CrossRefGoogle Scholar
  23. 23.
    van der Linde, R.Q.: Passive bipedal walking with phasic muscle contraction. Biol. Cybern. 81(227), 227–237 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lipfert, S.W.: Kinematic and Dynamic Similarities Between Walking and Running. Verlag Dr. Kovaĉ, Hamburg (2010)Google Scholar
  25. 25.
    Chevallereau, C., Grizzle, J.W., Shih, C.: Asymptotically stable walking of a five-link underactuated 3D bipedal robot. IEEE Trans. Robot. 25(1), 37–50 (2009)CrossRefGoogle Scholar
  26. 26.
    Cheng, M.Y., Lin, C.S.: Measurement of robustness for biped locomotion using a linearized Poinćare map. Robotica 14, 253–259 (1996)CrossRefGoogle Scholar
  27. 27.
    Winter, D.A.: BioMechanics and Motor Control of Human Movement, 3rd edn. Wiley, Hoboken (2005)Google Scholar
  28. 28.
    Johansson, J.L., Sherrill, D.M., Riley, P.O., Bonato, P., Herr, H.: A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am. J. Phys. Med. Rehabilit. 84(8), 563–575 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • S. D. Yazdi-Mirmokhalesouni
    • 1
  • M. A. Sharbafi
    • 1
    Email author
  • M. J. Yazdanpanah
    • 1
  • M. Nili-Ahmadabadi
    • 1
  1. 1.Control and Intelligent Processing Center of ExcellenceUniversity of TehranTehranIran

Personalised recommendations