Nonlinear Dynamics

, Volume 90, Issue 4, pp 2317–2330 | Cite as

Chimera states in ensembles of bistable elements with regular and chaotic dynamics

  • Igor A. ShepelevEmail author
  • Andrei V. Bukh
  • Galina I. Strelkova
  • Tatiana E. Vadivasova
  • Vadim S. Anishchenko
Original Paper


We consider ensembles of bistable elements with nonlocal interaction. It is shown that the bistability of units in the case of nonlocal interaction leads to the formation of chimera structures of a special type, which we have called double-well chimeras. Their distinctive feature consists in the formation of incoherence clusters with an irregular distribution of elements between two attractive sets existing in an individual element (two “potential wells”). Ensembles of different bistable units are considered, namely ensembles of cubic maps, FitzHugh–Nagumo oscillators in the regime of two stable equilibrium points and Chua’s circuits. The spatiotemporal behavior of the ensembles is studied in the cases of regular and chaotic dynamics in time, and different types of chimera structures are revealed.


Ensemble of oscillators Spatial structure Chimera Dynamical chaos Nonlocal coupling FitzHugh–Nagumo oscillator 

Mathematics Subject Classification

34G20 37N30 



Sections 2 and 4 were supported by the Russian Science Foundation (Grant No. 16-12-10175). Sections 1 and 3 were supported by the Russian Science Foundation (Grant No. 16-12-10175). This research was partly supported in the framework of SFB910. I. A. Sh. acknowledge support from the Russian Science Foundation (Grant No. 16-12-10175).


  1. 1.
    Gibbs, H.M.: Optical Bistability: Controlling Light with Light. Academic Press, Orlando (1985)Google Scholar
  2. 2.
    Haönggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Madan, R.N.: Chuas Circuit : A Paradigm for Chaos. World Scientific, Singapore (1993)CrossRefGoogle Scholar
  4. 4.
    Kramers, H.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Schlögl, F.: Chemical reaction models for nonequilibrium phase-transitions. Z. Phys. 253, 147–161 (1972)CrossRefGoogle Scholar
  6. 6.
    Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  7. 7.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience. The MIT press, Cambridge (2007)Google Scholar
  8. 8.
    May, R.M.: Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977)CrossRefGoogle Scholar
  9. 9.
    Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 14, 453–457 (1981)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Guttal, V., Jayaprakash, C.: Impact of noise on bistable ecological systems. Ecol. Model. 201, 420–428 (2007)CrossRefGoogle Scholar
  11. 11.
    Benzi, R.: Stochastic resonance: from climate to biology. Nonlinear Process. Geophys. 17, 431–441 (2010)CrossRefGoogle Scholar
  12. 12.
    Mikhailov, S., Loskutov, A.: Foundation of Synergetics. Complex Patterns. Springer, Berlin (1995)zbMATHGoogle Scholar
  13. 13.
    Nekorkin, V.I., Velarde, M.G.: Synergetic Phenomena in Active Lattices. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Comte, J.C., Morfu, S., Marquié, P.: Propagation failure in discrete bistable reactiondiffusion systems: theory and experiments. Phys. Rev. E 64, 027102 (2001)CrossRefGoogle Scholar
  15. 15.
    Bulsara, A.R., In, V., Kho, A., Longhini, P., Palacios, A., Rappel, W.-J., Acebron, J., Baglio, S., Ando, B.: Emergent oscillations in unidirectionally coupled overdamped bistable systems. Phys. Rev. E 70, 036103 (2004)CrossRefGoogle Scholar
  16. 16.
    Shimizu, K., Endo, T., Ueyama, D.: Pulse wave propagation in a large number of coupled bistable oscillators. IEICE Trans. Fundam. Electr. Commun. Comput. Sci. 91(9), 2540–2545 (2008)CrossRefGoogle Scholar
  17. 17.
    Shepelev, I.A., Slepnev, A.V., Vadivasova, T.E.: Different synchronization characteristics of distinct types of traveling waves in a model of active medium with periodic boundary conditions. Commun. Nonlinear. Sci. and Numer. Simul. 38, 206–217 (2016)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Osipov, G.V., Kurths, J., Zhou, Ch.: Synchronization in Oscillatory Networks. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Nekorkin, V.I., Makarov, V.A.: Spatial chaos in a chain of coupled bistable oscillators. Phys. Rev. Lett. 74, 48194822 (1995)CrossRefGoogle Scholar
  20. 20.
    Nekorkin, V.I., Makarov, V.A., Kazantsev, V.B., Velarde, M.G.: Spatial disorder and pattern formation in lattices of coupled bistable elements. Phys. D 100(3), 330–342 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Nekorkin, V.I., Shapin, D.S., Dmitrichev, A.S., Kazantsev, V.B., Binczak, S., Bilbault, J.M.: Heteroclinic contours and self-replicated solitary waves in a reaction-diffusion lattice with complex threshold excitation. Phys. D 237(19), 2463–2475 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonl. Phenom. Complex Syst. 4, 380–385 (2002)Google Scholar
  23. 23.
    Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)CrossRefGoogle Scholar
  24. 24.
    Omelchenko, I., Maistrenko, Y., Hövel, P., Schöll, E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011)CrossRefGoogle Scholar
  25. 25.
    Zakharova, A., Kapeller, M., Schöll, E.: Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112, 154101 (2014)CrossRefGoogle Scholar
  26. 26.
    Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Maistrenko, Y., Sudakov, O., Osir, O., Maistrenko, V.: Chimera states in three dimensions. New J. Phys. 17, 073037 (2015)CrossRefGoogle Scholar
  28. 28.
    Bogomolov, S.A., Slepnev, A.V., Strelkova, G.I., Schöll, E., Anishchenko, V.S.: Mechanisms of appearance of amplitude and phase chimera states in a ring of nonlocally coupled chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 43, 2536 (2016)Google Scholar
  29. 29.
    Yeldesbay, A., Pikovsky, A., Rosenblum, M.: Chimeralike states in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 112, 144103 (2014)CrossRefGoogle Scholar
  30. 30.
    Sethia, G.C., Sen, A.: Chimera states: the existence criteria revisited. Phys. Rev. Lett. 112, 144101 (2014)CrossRefGoogle Scholar
  31. 31.
    Böhm, F., Zakharova, A., Schöll, E., Lüdge, K.: Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys. Rev. E 91(14), 040901 (2014)MathSciNetGoogle Scholar
  32. 32.
    Laing, C.: Chimera in networks with purely local coupling. Phys. Rev. E 92(5), 050904 (2015)CrossRefGoogle Scholar
  33. 33.
    Clerc, M.G., Coulibaly, S., Ferrë, M.A., Garcïa-Nustes, M.A., Rojas, R.G.: Chimera-type states induced by local coupling. Phys. Rev. E 93, 052204 (2015)CrossRefGoogle Scholar
  34. 34.
    Shepelev, I.A., Zakharova, A., Vadivasova, T.E.: Chimera regimes in a ring of oscillators with local nonlinear interaction. Commun. Nonlinear Sci. Numer. Simul. 44, 277–283 (2016)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Laing, C.R., Rajendran, K., Kevrekidis, I.G.: Chimeras in random non-complete networks of phase oscillators. Chaos 22, 013132 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Hizanidis, J., Panagakou, E., Omelchenko, I., Schöll, E., Hövel, P., Provata, A.: Chimera states in population dynamics: networks with fragmented and hierarchical connectivities. Phys. Rev. E 92, 012915 (2015)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Ulonska, S., Omelchenko, I., Zakharova, A., Schöll, E.: Chimera states in networks of Van der Pol oscillators with hierarchical connectivities. Chaos 26, 094825 (2016)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Abrams, D.M., Mirollo, R., Strogatz, S.H., Wiley, D.A.: Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101, 084103 (2008)CrossRefGoogle Scholar
  39. 39.
    Omelchenko, O.E., Wolfrum, M., Yanchuk, S., Maistrenko, Y.L., Sudakov, O.: Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators. Phys. Rev. E 85, 036210 (2012)CrossRefGoogle Scholar
  40. 40.
    Omelchenko, I., Omelchenko, O.E., Hövel, P., Schöll, E.: When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110, 224101 (2013)CrossRefGoogle Scholar
  41. 41.
    Omelchenko, I., Provata, A., Hizanidis, J., Schöll, E., Hövel, P.: Robustness of chimera states for coupled FitzHugh–Nagumo oscillators. Phys. Rev. E 91, 022917 (2015)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Omelchenko, I., Riemenschneider, B., Hövel, P., Maistrenko, Y., Schöll, E.: Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E 85, 026212 (2012)CrossRefGoogle Scholar
  43. 43.
    Semenova, N., Zakharova, A., Schöll, E., Anishchenko, V.: Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators? Europhys. Lett. 112, 40002 (2015)CrossRefGoogle Scholar
  44. 44.
    Slepnev, A.V., Bukh, A.V., Vadivasova, T.E.: Stationary and non-stationary chimeras in an ensemble of chaotic self-sustained oscillators with inertial nonlinearity. Nonlinear Dyn. 88, 1–10 (2017)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Semenova, N., Zakharova, A., Anishchenko, V., Schöll, E.: Coherence-resonance chimeras in a network of excitable elements. Phys. Rev. Lett. 117, 014102 (2016)CrossRefGoogle Scholar
  46. 46.
    Banerjee, T., Dutta, P.S., Zakharova, A., Schöll, E.: Chimera patterns induced by distance-dependent power-law coupling in ecological networks. Phys. Rev. E. 94, 032206 (2016)CrossRefGoogle Scholar
  47. 47.
    Dudkowski, D., Maistrenko, Y., Kapitaniak, T.: Different types of chimera states: an interplay between spatial and dynamical chaos. Phys. Rev. E 90, 032920 (2014)CrossRefGoogle Scholar
  48. 48.
    Mishra, A., Hens, Ch., Bose, M., Roy, P.K., Dana, S.K.: Chimeralike states in a network of oscillators under attractive and repulsive global coupling. Phys. Rev. E 92, 062920 (2015)CrossRefGoogle Scholar
  49. 49.
    Shepelev, I.A., Vadivasova, T.E., Strelkova, G.I., Anishchenko, V.S.: New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction. Phys. Lett. A 381(16), 1398–1404 (2017)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Scjolding, H., Branner-Jorgensen, B., Christiansen, P.L., Jensen, H.E.: Bifurcations in discrete dynamical systems with cubic maps. SIAM J. Appl. Math. 43(3), 520–534 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Anishchenko, V.S.: Dynamical Chaos—Models and Experiments, vol. 8. World Scientific, Singapore (1995)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Igor A. Shepelev
    • 1
    Email author
  • Andrei V. Bukh
    • 1
  • Galina I. Strelkova
    • 1
  • Tatiana E. Vadivasova
    • 1
  • Vadim S. Anishchenko
    • 1
  1. 1.Saratov National Research State UniversitySaratovRussia

Personalised recommendations