Advertisement

Nonlinear Dynamics

, Volume 90, Issue 3, pp 2221–2230 | Cite as

Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects

  • Liu-Ying Cai
  • Xin Wang
  • Lei Wang
  • Min Li
  • Yong Liu
  • Yu-Ying Shi
Original Paper

Abstract

In this paper, we study a variable-coefficient nonlinear Schrödinger (vc-NLS) equation with fourth-order effects describing an inhomogeneous one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain or alpha helical protein. The first-order nonautonomous breather solution of the fourth-order vc-NLS equation is derived. The state transition between nonautonomous breather and nonautonomous multi-peak soliton can be realized when group velocity dispersion (GVD) coefficient is proportional to the fourth-order dispersion (FOD) coefficient. We also display how the higher-order effects influence the nonautonomous multi-peak solitons. Our results show that the velocity and localization of the nonautonomous multi-peak soliton are affected by the FOD coefficient, and the peak number is controlled by the GVD coefficient. Further, we also show the compression effect and motion with variable velocity of nonautonomous multi-peak soliton in two kinds of dispersion management systems. Finally, we reveal the relation between the state transition and the modulation instability (MI) analysis.

Keywords

Variable-coefficient nonlinear Schrödinger equation Nonautonomous multi-peak soliton Higher-order effects Modulation instability 

Notes

Acknowledgements

We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant (Nos. 11305060, 11271126, 11705290 and 61505054), by the Fundamental Research Funds of the Central Universities (Project No. 2015ZD16), by China Postdoctoral Science Foundation funded sixtieth batches (No. 2016M602252). Lei Wang put forward the idea of this paper. Lei Wang and Liu-ying Cai contributed all mathematical calculation and physical analysis. Lei Wang and Liu-ying Cai wrote the paper. Xin Wang, Min Li, Yong Liu and Yu-ying Shi polished the language. Liu-ying Cai generated all the figures and was responsible for all simulations.

References

  1. 1.
    Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, B., Akhmediev, N., Dias, F., Dudley, J.M.: Observation of Kuznetsov–Ma soliton dynamics in optical fibre. Sci. Rep. 236, 463 (2012)CrossRefGoogle Scholar
  3. 3.
    Akhmediev, N.N., Kornee, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755 (2014)CrossRefGoogle Scholar
  5. 5.
    Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16 (1983)CrossRefzbMATHGoogle Scholar
  6. 6.
    Shrira, V.I., Geogjaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Yang, G., Li, L., Jia, S., Mihalache, D.: High power pulses extracted from the Peregrine rogue wave. Rom. Rep. Phys. 65, 391 (2013)Google Scholar
  8. 8.
    Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B Fluids 22, 603 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chabchoub, A., Hoffmann, N., Onorato, M., Akhmediev, N.: Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 106, 011015 (2012)Google Scholar
  11. 11.
    Osborne, A.R.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Elsevier, Amsterdam (2010)zbMATHGoogle Scholar
  12. 12.
    Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)CrossRefGoogle Scholar
  13. 13.
    Porter, A., Smyth, N.F.: Modelling the morning glory of the Gulf of Carpentaria. J. Fluid Mech. 454, 1 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Soto-Crespo, J.M., Grelu, P., Akhmediev, N.: Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers. Phys. Rev. E 84, 016604 (2011)CrossRefGoogle Scholar
  15. 15.
    Dai, C.Q., Tian, Q., Zhu, S.Q.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)CrossRefGoogle Scholar
  16. 16.
    Wang, L., Jiang, D.Y., Qi, F.H., Shi, Y.Y., Zhao, Y.C.: Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model. Commun. Nonlinear Sci. Numer. Simul. 42, 502 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2002)zbMATHGoogle Scholar
  19. 19.
    Li, M., Tian, B., Liu, W.J., Zhang, H.Q., Meng, X.H., Xu, T.: Soliton-like solutions of a derivative nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 62, 919 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gao, X.Y.: Density-fluctuation symbolic computation on the (3+1)-dimensional variable-coefficient Kudryashov Sinelshchikov equation for a bubbly liquid with experimental support. Mod. Phys. Lett. B 30, 1650217 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gao, X.Y.: Bäcklund transformation and shock-wave-type solutions for a generalized (3t1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics. Ocean Eng. 96, 245 (2015)CrossRefGoogle Scholar
  22. 22.
    Wang, X., Liu, C., Wang, L.: Darboux transformation and rogue wave solutions for the variable-coefficients coupled Hirota equations. J. Math. Anal. Appl. 449, 1534 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lü, X., Peng, M.: Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells–Fokas model. Chaos 23, 013122 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett. 90, 113902 (2003)CrossRefGoogle Scholar
  25. 25.
    Wang, L., Li, X., Qi, F.H., Zhang, L.L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell–Bloch equations. Ann. Phys. 359, 97 (2015)CrossRefzbMATHGoogle Scholar
  26. 26.
    Wang, L., Zhu, Y.J., Qi, F.H., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells–Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bogatyrev, V.A., Bubnov, M.M., Dianov, E.M., Kurkov, A.S., Mamyshev, P.V., Prokhorov, A.M., Rumyantsev, S.D., Semenov, V.A., Semenov, S.L., Sysoliatin, A.A., Chernikov, S.V., Guryanov, A.N., Devyatykh, G.G., Miroshnichenko, S.I.: A single-mode fiber with chromatic dispersion varying along the length. J. Lightwave Technol. 9, 561 (1991)CrossRefGoogle Scholar
  28. 28.
    Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. E 71, 056619 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yan, Z.Y., Konotop, V.V., Akhmediev, N.: Three-dimensional rogue waves in nonstationary parabolic potentials. Phys. Rev. E 82, 036610 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhong, W.P., Belić, M., Malomed, B.A., Huang, T.W.: Breather management in the derivative nonlinear Schrödinger equation with variable coefficients. Ann. Phys. 355, 313 (2015)CrossRefzbMATHGoogle Scholar
  31. 31.
    He, J.S., Tao, Y.S., Porsezian, K., Fokas, A.S.: Rogue wave management in an inhomogeneous Nonlinear Fibre with higher order effects. J. Nonlinear Math. Phys. 20, 407 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Dai, C.Q., Zhou, G.Q., Zhang, J.F.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)CrossRefGoogle Scholar
  33. 33.
    Zhong, W.P., Chen, L., Belić, M., Petrović, N.: Controllable parabolic-cylinder optical rogue wave. Phys. Rev. E 90, 043201 (2014)CrossRefGoogle Scholar
  34. 34.
    Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Liu, L., Tian, B., Chai, H.P., Yuan, Y.Q.: Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber. Phys. Rev. E 95, 032202 (2017)CrossRefGoogle Scholar
  36. 36.
    Liu, C., Yang, Z.Y., Zhao, L.C., Duan, L., Yang, G.Y., Yang, W.L.: Symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime. Phys. Rev. E 94, 042221 (2016)CrossRefGoogle Scholar
  37. 37.
    Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: State transition induced by higher-order effects and background frequency. Phys. Rev. E 91, 022904 (2015)CrossRefGoogle Scholar
  38. 38.
    Chai, J., Tian, B., Zhen, H.L., Sun, W.Y., Liu, D.Y.: Dynamic behaviors for a perturbed nonlinear Schrödinger equation with the power-law nonlinearity in a non-Kerr medium. Commun. Nonlinear Sci. Numer. Simul. 45, 93 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Marklund, M., Shukla, P.K., Stenflo, L.: Ultrashort solitons and kinetic effects in nonlinear metamaterials. Phys. Rev. E 73, 037601 (2006)CrossRefGoogle Scholar
  40. 40.
    Wang, L., Wang, Z.Q., Sun, W.R., Shi, Y.Y., Li, M., Xu, M.: Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell–Bloch system. Commun. Nonlinear Sci. Numer. Simul. 47, 190 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhao, L.C., Li, S.C., Ling, L.M.: W-shaped solitons generated from a weak modulation in the Sasa-Satsuma equation. Phys. Rev. E 93, 032215 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wang, L., Zhu, Y.J., Wang, Z.Q., Xu, T., Qi, F.H., Xue, Y.S.: Asymmetric Rogue waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota–Maxwell–Bloch system. J. Phys. Soc. Jpn. 85, 024001 (2016)CrossRefGoogle Scholar
  43. 43.
    Wang, L., Li, S., Qi, F.H.: Breather-to-soliton and rogue wave-to-soliton transitions in a resonant erbium-doped fiber system with higher-order effects. Nonlinear Dyn. 85, 389 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)CrossRefGoogle Scholar
  46. 46.
    Wang, L., Wang, Z.Q., Zhang, J.H., Qi, F.H., Li, M.: Stationary nonlinear waves, superposition modes and modulational instability characteristics in the AB system. Nonlinear Dyn. 86, 185 (2016)CrossRefGoogle Scholar
  47. 47.
    Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: Transition, coexistence, and interaction of vector localized waves arising from higher-order effects. Ann. Phys. 362, 130 (2015)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Ren, Y., Yang, Z.Y., Liu, C., Yang, W.L.: Different types of nonlinear localized and periodic waves in an erbium-doped fiber system. Phys. Lett. A 379, 2991 (2015)CrossRefGoogle Scholar
  49. 49.
    Zhang, J.H., Wang, L., Liu, C.: Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects. Proc. R. Soc. A 473, 20160681 (2017)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Chowdury, A., Ankiewicz, A., Akhmediev, N.: Moving breathers and breather-to-soliton conversions for the Hirota equation. Proc. R. Soc. A 471, 20150130 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Zakharov, V.E., Gelash, A.A.: Nonlinear stage of modulation instability. Phys. Rev. Lett. 111, 054101 (2013)CrossRefGoogle Scholar
  53. 53.
    Yang, J.W., Gao, Y.T., Wang, Q.M., Su, C.Q., Feng, Y.J., Yu, X.: Bilinear forms and soliton solutions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or an alpha helical protein. Phys. B 481, 148 (2016)CrossRefGoogle Scholar
  54. 54.
    Yang, J.W., Gao, Y.T., Su, C.Q., Wang, Q.M., Lan, Z.Z.: Breathers and rogue waves in a Heisenberg ferromagnetic spin chain or an alpha helical protein. Commun. Nonlinear Sci. Numer. Simul. 48, 340 (2017)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Xie, X.Y., Tian, B., Chai, J., Wu, X.Y., Jiang, Y.: Dark soliton collisions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or alpha helical protein. Nonlinear Dyn. 86, 131 (2016)Google Scholar
  56. 56.
    Su, C.Q., Qin, N., Li, J.G.: Conservation laws, nonautonomous breathers and rogue waves for a higher-order nonlinear Schrödinger equation in the inhomogeneous optical fiber. Superlattices Microstruct. 100, 381 (2016)CrossRefGoogle Scholar
  57. 57.
    Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)CrossRefGoogle Scholar
  59. 59.
    Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Phys. Rev. E 91, 022919 (2015)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Yang, R.C., Li, L., Hao, R.Y., Li, Z.H., Zhou, G.S.: Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrödinger equation. Phys. Rev. E 71, 036616 (2005)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Yin, H.M., Tian, B., Zhen, H.L., Chai, J., Liu, L., Sun, Y.: Solitons, bilinear Bäcklund transformations and conservation laws for a (2+1)-dimensional Bogoyavlenskii–Kadontsev–Petviashili equation in a fluid, plasma or ferromagnetic thin film. J. Mod. Opt. 64, 725 (2012)CrossRefGoogle Scholar
  62. 62.
    Sabry, R., Moslem, W.M., Shukla, P.K.: Amplitude modulation of hydromagnetic waves and associated rogue waves in magnetoplasmas. Phys. Rev. E 86, 036408 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsNorth China Electric Power UniversityBeijingPeople’s Republic of China
  2. 2.College of ScienceZhongyuan University of TechnologyZhengzhouPeople’s Republic of China
  3. 3.School of Mathematics and StatisticsZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations