Advertisement

Nonlinear Dynamics

, Volume 90, Issue 2, pp 1269–1275 | Cite as

Exact vector multipole and vortex solitons in the media with spatially modulated cubic–quintic nonlinearity

  • Yue-Yue Wang
  • Liang Chen
  • Chao-Qing Dai
  • Jun Zheng
  • Yan Fan
Original Paper

Abstract

A (2+1)-dimensional N-coupled nonlinear Schrödinger equation with spatially modulated cubic–quintic nonlinearity and transverse modulation is studied, and vector multipole and vortex soliton solutions are analytically obtained. When the modulation depth q is chosen as 0 and 1, vector multipole and vortex solitons are constructed, respectively. The number of “petals” for the multipole solitons and vortex solitons is related to the value of the topological charge m, and the number of layers in the multipole solitons and vortex solitons is determined by the value of the soliton order number n.

Keywords

Vector multipole solitons Vector vortex solitons Cubic–quintic nonlinearity Spatially modulated nonlinearity 

Notes

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY17A040011 and LY17F050011) and the National Natural Science Foundation of China (Grant Nos. 11404289 and 11375007).

References

  1. 1.
    Zhou, Q., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H.: Exact optical solitons in metamaterials with cubic–quintic nonlinearity and third-order dispersion. Nonlinear Dyn. 80, 1365–1371 (2015)CrossRefGoogle Scholar
  2. 2.
    Kong, L.Q., Liu, J., Jin, D.Q., Ding, D.J., Dai, C.Q.: Soliton dynamics in the three-spine \(\alpha \)-helical protein with inhomogeneous effect. Nonlinear Dyn. 87, 83–92 (2017)CrossRefGoogle Scholar
  3. 3.
    Zhou, Q., Zhu, Q., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Rom. Acad. Ser. A 16, 152–159 (2015)MathSciNetGoogle Scholar
  4. 4.
    Zhang, B., Zhang, X.L., Dai, C.Q.: Discussions on localized structures based on equivalent solution with different forms of breaking soliton model. Nonlinear Dyn. 87, 2385–2393 (2017)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Zhou, Q., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H.: Exact optical solitons in metamaterials with cubic–quintic nonlinearity and third-order dispersion. Nonlinear Dyn. 80, 1365–1371 (2015)CrossRefGoogle Scholar
  6. 6.
    Wu, H.Y., Jiang, L.H.: Vector Hermite–Gaussian spatial solitons in (2+1)-dimensional strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 713–718 (2016)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dai, C.Q., Chen, R.P., Wang, Y.Y., Fan, Y.: Dynamics of light bullets in inhomogeneous cubic–quintic–septimal nonlinear media with PT-symmetric potentials. Nonlinear Dyn. 87, 1675–1683 (2017)Google Scholar
  8. 8.
    Stegeman, G.I., Segev, M.: Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999)CrossRefGoogle Scholar
  9. 9.
    Dai, C.Q., Wang, X.G.: Light bullet in parity-time symmetric potential. Nonlinear Dyn. 77, 1133–1139 (2014)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Wang, Y.Y., Dai, C.Q., Wang, X.G.: Stable localized spatial solitons in PT-symmetric potentials with power-law nonlinearity. Nonlinear Dyn. 77, 1323–1330 (2014)CrossRefGoogle Scholar
  11. 11.
    Dai, C.Q., Wang, Y.Y.: Spatiotemporal localizations in (3+1)-dimensional PT-symmetric and strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 2453–2459 (2016)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Dai, C.Q., Fan, Y., Zhou, G.Q., Zheng, J., Chen, L.: Vector spatiotemporal localized structures in (3+1)-dimensional strongly nonlocal nonlinear media. Nonlinear Dyn. 86, 999–1005 (2016)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Dai, C.Q., Zhang, J.E.: Controllable dynamical behaviors for spatiotemporal bright solitons on continuous wave background. Nonlinear Dyn. 73, 2049–2057 (2013)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Zhu, H.P., Pan, Z.H.: Vortex soliton in (2+1)-dimensional PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 83, 1325–1330 (2016)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Zhu, H.P., Chen, L., Chen, H.Y.: Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrodinger equation with variable coefficients. Nonlinear Dyn. 85, 1913–1918 (2016)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Xu, Y.J.: Hollow ring-like soliton and d ipole soliton in (2+1)-dimensional PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 83, 1497–1501 (2016)CrossRefGoogle Scholar
  17. 17.
    Wu, H.Y., Jiang, L.H.: Vector Hermite–Gaussian spatial solitons in (2+1)-dimensional strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 713–718 (2016)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Li, J.T., Zhu, Y., Liu, Q.T., Han, J.Z., Wang, Y.Y., Dai, C.Q.: Vector combined and crossing Kuznetsov–Ma solitons in PT-symmetric coupled waveguides. Nonlinear Dyn. 85, 973–980 (2016)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine soliton and Kuznetsov–Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite–Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 84, 1157–1161 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Pusharov, D.I., Tanev, S.: Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities. Opt. Commun. 124, 354–364 (1996)CrossRefGoogle Scholar
  22. 22.
    Ndzana, F.I., Mohamadou, A., Kofané, T.C.: Modulational instability in the cubic–cquintic nonlinear Schrödinger equation through the variational approach. Opt. Commun. 275, 421–428 (2007)CrossRefGoogle Scholar
  23. 23.
    Dai, C.Q., Wang, Y.: Higher-dimens ional locali zed mode families in parity-time-symmetric potentials with competing nonlinearities. J. Opt. Soc. Am. B 31, 2286–2294 (2014)CrossRefGoogle Scholar
  24. 24.
    Serkin, V.N., Belyaeva, T.L., Alexandrov, I.V., Melchor, G.M.: Novel topological quasi-soliton solutions for the nonlinear cubic–quintic Schrodinger equation model. Proc. SPIE Int. Soc. Opt. Eng. 4271, 292–302 (2001)Google Scholar
  25. 25.
    Avelar, A.T., Bazeia, D., Cardoso, W.B.: Solitons with cubic and quintic nonlinearities modulated in space and time. Phys. Rev. E 79, 025602 (2009)CrossRefGoogle Scholar
  26. 26.
    Quiroga-Teixeiro, M., Michinel, H.: Stable azimuthal stationary state in quintic nonlinear optical media. J. Opt. Soc. Am. B 14, 2004–2009 (1997)CrossRefGoogle Scholar
  27. 27.
    Agrawal, G.P.: Nonlinear Fiber Optics. Academic, New York (1995)zbMATHGoogle Scholar
  28. 28.
    Gomez-Alcala, R., Dengra, A.: Vector soliton switching by using the cascade connection of saturable absorbers. Opt. Lett. 31, 3137–3139 (2006)CrossRefGoogle Scholar
  29. 29.
    Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974)Google Scholar
  30. 30.
    Radhakrishnan, R., Aravinthan, K.: A dark-bright optical soliton solution to the coupled nonlinear Schrödinger equation. J. Phys. A Math. Theor. 40, 13023 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Zhong, W.P., Belic, M.R., Assanto, G., Malomed, B.A., Huang, T.W.: Self-trapping of scalar and vector dipole solitary waves in Kerr media. Phys. Rev. A 83, 043833 (2011)CrossRefGoogle Scholar
  32. 32.
    Belmonte-Beitia, J., Cuevas, J.: Solitons for the cubic–quintic nonlinear Schrodinger equation with time- and space-modulated coefficients. J. Phys. A Math. Theor. 42, 165201 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Belmonte-Beitia, J., Perez-Garcia, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time-and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)CrossRefGoogle Scholar
  34. 34.
    Whittaker, E.T., Watson, G.N.: A Course in Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  35. 35.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Yue-Yue Wang
    • 1
  • Liang Chen
    • 1
  • Chao-Qing Dai
    • 1
  • Jun Zheng
    • 1
  • Yan Fan
    • 1
  1. 1.School of SciencesZhejiang A&F UniversityLin’anPeople’s Republic of China

Personalised recommendations