Advertisement

An infinite 2-D lattice of strange attractors

  • 352 Accesses

  • 39 Citations

Abstract

Periodic trigonometric functions are introduced in 2-D offset-boostable chaotic flows to generate an infinite 2-D lattice of strange attractors. These 2-D offset-boostable chaotic systems are constructed based on standard jerk flows and extended to more general systems by exhaustive computer searching. Two regimes of multistability with a lattice of strange attractors are explored where the infinitely many attractors come from a 2-D offset-boostable chaotic system in cascade or in an interactive mode.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Bao, B., Li, Q., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26, 043111 (2016)

  2. 2.

    Xu, Q., Lin, Y., Bao, B., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fract. 83, 186–200 (2016)

  3. 3.

    Lai, Q., Chen, S.: Research on a new 3D autonomous chaotic system with coexisting attractors. Optik 127, 3000–3004 (2016)

  4. 4.

    Lai, Q., Chen, S.: Generating multiple chaotic attractors from Sprott B system. Int. J. Bifurc. Chaos 26, 1650177 (2016)

  5. 5.

    Sprott, J.C.: Simplest chaotic flows with involutional symmetries. Int. J. Bifurc. Chaos 24, 1450009 (2014)

  6. 6.

    Li, C., Sprott, J.C.: Multistability in the Lorenz system: a broken butterfly. Int. J. Bifurc. Chaos 24, 1450131 (2014)

  7. 7.

    Sprott, J.C.: A dynamical system with a strange attractor and invariant tori. Phys. Lett. A 378, 1361–1363 (2014)

  8. 8.

    Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224, 1493–1506 (2015)

  9. 9.

    Barrio, R., Blesa, F., Serrano, S.: Qualitative analysis of the Rössler equations: bifurcations of limit cycles and chaotic attractors. Phys. D 238, 1087–1100 (2009)

  10. 10.

    Sprott, J.C., Wang, X., Chen, G.: Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos 23, 1350093 (2013)

  11. 11.

    Li, C., Sprott, J.C., Xing, H.: Hypogenetic chaotic jerk flows. Phys. Lett. A 380, 1172–1177 (2016)

  12. 12.

    Li, C., Sprott, J.C., Xing, H.: Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 87, 1351–1358 (2017)

  13. 13.

    Li, C., Sprott, J.C.: Variable-boostable chaotic flows. Optik 127, 10389–10398 (2016)

  14. 14.

    Foss, J., Longtin, A., Mensour, B., Milton, J.: Multistability and delayed recurrent loops. Phys. Rev. Lett. 76, 708 (1996)

  15. 15.

    Zeng, Z., Huang, T., Zheng, W.: Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21, 1371–1377 (2010)

  16. 16.

    Zeng, Z., Zheng, W.: Multistability of neural networks with time-varying delays and concave–convex characteristics. IEEE Trans. Neural Netw. Learn. Syst. 23, 293–305 (2012)

  17. 17.

    Komarov, A., Leblond, H., Sanchez, F.: Multistability and hysteresis phenomena in passively mode-locked fiber lasers. Phys. Rev. A 71, 053809 (2005)

  18. 18.

    Angeli, D., Ferrell, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. 101, 1822–1827 (2003)

  19. 19.

    Ujjwal, S.R., Punetha, N., Ramaswamy, R., Agrawal, M., Prasad, A.: Driving-induced multistability in coupled chaotic oscillators: symmetries and riddled basins. Chaos 26, 063111 (2016)

  20. 20.

    Hens, C.R., Banerjee, R., Feudel, U., Dana, S.K.: How to obtain extreme multistability in coupled dynamical systems. Phys. Rev. E 85, 035202R (2012)

  21. 21.

    Sprott, J.C., Li, C.: Comment on “How to obtain extreme multistability in coupled dynamical systems”. Phys. Rev. E 89, 066901 (2014)

  22. 22.

    Patel, M.S., Patel, U., Sen, A., Sethia, G.C., Hens, C., Dana, S.K., Feudel, U., Showalter, K., Ngonghala, C.N., Amritkar, R.E.: Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. Phys. Rev. E 89, 022918 (2014)

  23. 23.

    Bao, B., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52, 1008–1010 (2016)

  24. 24.

    Leonov, G.A., Vagaitsev, V.I., Kuznetsov, N.V.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)

  25. 25.

    Leonov, G.A., Vagaitsev, V.I., Kuznetsov, N.V.: Hidden attractor in smooth Chua systems. Phys. D 241, 1482–1486 (2012)

  26. 26.

    Wei, Z., Zhang, W.: Hidden hyperchaotic attractors in a modified Lorenz–Tenfold system with only one stable equilibrium. Int. J. Bifurc. Chaos 24, 1450127 (2014)

  27. 27.

    Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24, 1450034 (2014)

  28. 28.

    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Multistability: uncovering hidden attractors. Eur. Phys. J. Spec. Top. 224, 1405–1408 (2015)

  29. 29.

    Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224, 1469–1476 (2015)

  30. 30.

    Pham, V.T., Jafari, S., Wang, X., Ma, J.: A chaotic system with different shapes of equilibria. Int. J. Bifurc. Chaos 26, 1650069 (2016)

  31. 31.

    Jiang, H., Liu, Y., Wei, Z., Zhang, L.: Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn. 85, 2719–2727 (2016)

  32. 32.

    Sprott, J.C.: Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific, Singapore (2010) QA614.82 S67 2010, ISBN 978-981-283-881-0

  33. 33.

    Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)

  34. 34.

    Kengne, J., Njitacke, Z.T., Nguomkam Negou, A., Fouodji Tsostop, M., Fotsin, H.B.: Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. Int. J. Bifurc. Chaos 26, 1650081 (2016)

  35. 35.

    Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)

  36. 36.

    Vaidyanathan, S., Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., Pham, V.T.: Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J. Eng. Sci. Technol. Rev. 8, 24–36 (2015)

  37. 37.

    Sprott, J.C.: Some simple chaotic jerk functions. Am. J. Phys. 65, 537–543 (1997)

  38. 38.

    Malasoma, J.-M.: What is the simplest dissipative chaotic jerk equation which is parity invariant? Phys. Lett. A 264, 383–389 (2000)

  39. 39.

    Thomas, R.: Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, ‘labyrinth chaos’. Int. J. Bifurc. Chaos 9, 1889–1905 (1999)

  40. 40.

    Sprott, J.C., Chlouverakis, K.E.: Labyrinth chaos. Int. J. Bifurc. Chaos 17, 2097–2108 (2007)

  41. 41.

    Chlouverakis, K.E., Sprott, J.C.: Hyperlabyrinth chaos: from chaotic walks to spatiotemporal chaos. Chaos 17, 023110 (2007)

  42. 42.

    Nosé, S.: Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 103, 1–46 (1991)

  43. 43.

    Hoover, W.G.: Remark on ‘Some simple chaotic flows’. Phys. Rev. E 51, 759–760 (1995)

  44. 44.

    Gottlieb, H.P.W.: Question 38. What is the simplest jerk function that gives chaos? Am. J. Phys. 64, 525 (1996)

  45. 45.

    Li, C., Pehlivan, I., Sprott, J.C.: Amplitude-phase control of a novel chaotic attractor. Turk. J. Electr. Eng. Comput. Sci. 24, 1–11 (2016)

  46. 46.

    Li, C., Sprott, J.C.: Amplitude control approach for chaotic signals. Nonlinear Dyn. 73, 1335–1341 (2013)

  47. 47.

    Li, C., Sprott, J.C., Thio, W., Zhu, H.: A new piecewise linear hyperchaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 61, 977–981 (2014)

  48. 48.

    Li, C., Sprott, J.C., Yuan, Z., Li, H.: Constructing chaotic systems with total amplitude control. Int. J. Bifurc. Chaos 25, 1530025 (2015)

  49. 49.

    Li, Z., Xu, D.: A secure communication scheme using projective chaos synchronization. Chaos Solitons Fract. 22, 477–481 (2004)

  50. 50.

    Lu, J., Wu, X., Lü, J.: Synchronization of a unified chaotic system and the application in secure communication. Phys. Lett. A 305, 365–370 (2002)

  51. 51.

    Wang, G., Chen, D., Lin, J., Chen, X.: The application of chaotic oscillators to weak signal detection. IEEE Trans. Ind. Electron. 46, 440–444 (1999)

  52. 52.

    Wang, G., He, S.: A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50, 945–953 (2003)

  53. 53.

    Wang, C., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Phys. Sin. 65, 240501 (2016)

  54. 54.

    Li, F., Yao, C.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84, 2305–2315 (2016)

Download references

Acknowledgements

We thank Dr. Akif for the help with circuit simulation. This work was supported financially by the Startup Foundation for Introducing Talent of NUIST (Grant No. 2016205), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 16KJB120004), Open Fund of Jiangsu Key Laboratory of Meteorological Observation and Information Processing (KDXS1401) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Correspondence to Chunbiao Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Sprott, J.C. & Mei, Y. An infinite 2-D lattice of strange attractors. Nonlinear Dyn 89, 2629–2639 (2017). https://doi.org/10.1007/s11071-017-3612-0

Download citation

Keywords

  • Offset boosting
  • Multistability
  • Infinitely many attractors