Advertisement

Nonlinear Dynamics

, Volume 89, Issue 3, pp 2013–2040 | Cite as

Three-dimensional energy channeling in the unit-cell model coupled to a spherical rotator I: bidirectional energy channeling

  • K. R. Jayaprakash
  • Yuli Starosvetsky
Original Paper

Abstract

This work is the first one in a two part series devoted to the analysis of the complex nonlinear mechanism of three-dimensional energy channeling emerging in a locally resonant three-dimensional, single-cell unit. The system under consideration comprises of an external mass subjected to a three-dimensional linear local potential with an internal spherical rotator. In the present study we focus on the analysis of the regimes of three-dimensional, bidirectional energy transport realized in the limit of low-energy excitations. Unlike the previously reported studies, this system under consideration exhibits rich nonlinear phenomena concerning the dynamics and the bifurcation structure of highly non-stationary regimes. Thus, in the considered limit we unveil analytically the two distinct families of non-stationary regimes corresponding to the in-plane as well as the out-of-plane bidirectional energy channeling. This phenomenon of bidirectional energy channeling is manifested by the three-dimensional, recurrent transformation of general in-plane oscillations of the external element to the orthogonally reoriented in-plane and out-of-plane ones. This three-dimensional energy flow is fully controlled by the internal spherical rotator coupled to the external mass. Here we also show that the regimes corresponding to the bidirectional energy channeling as well as spontaneous energy locking reported in the previously considered planar cases can be generalized analytically to the three-dimensional case. To this end we use a regular multi-scale analysis which enables to characterize and predict the intrinsic mechanisms governing the highly non-stationary regimes of the three-dimensional energy flow. Numerical simulations are found to be in extremely good correspondence with the analysis.

Keywords

Non-stationary regimes Resonant energy transport Three-dimensional energy channeling Limiting phase trajectory Bifurcation 

Notes

Acknowledgements

The first author acknowledges the financial support of Department of Science and Technology INSPIRE Faculty Fellowship (IFA13-ENG51), Government of India. The second author is grateful to Israel Science Foundation (Grant No. 484 /12) for financial support.

References

  1. 1.
    Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I. Springer, New York (2008)MATHGoogle Scholar
  2. 2.
    Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems II. Springer, Berlin (2009)MATHGoogle Scholar
  3. 3.
    Vakakis, A.F.: Advanced Nonlinear Strategies for Vibration Mitigation and System Identification. Springer, Berlin (2010)CrossRefGoogle Scholar
  4. 4.
    Manevitch, L.I., Gendelman, O.: Tractable Models of Solid Mechanics. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Kikot, I., Manevitch, L., Vakakis, A.: Non-stationary resonance dynamics of a nonlinear sonic vacuum with grounding supports. J. Sound Vib. 357, 349–364 (2015)CrossRefGoogle Scholar
  6. 6.
    Romeo, F., Manevitch, L.I., Bergman, L.A., Vakakis, A.F.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos 25, 053109 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hasselmann, K.: On the non-linear energy transfer in a gravity-wave spectrum. I. General theory. J. Fluid Mech. 12, 481–500 (1962)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Newell, A., Nazarenko, S., Biven, L.: Wave turbulence and intermittency. Physica D 152–153, 520–550 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lindberg, R.R., Charman, A.E., Wurtele, J.S., Friedland, L.: Robust autoresonant excitation in the plasma beat-wave accelerator. Phys. Rev. Lett. 93(5), 055001(1–4) (2004)CrossRefGoogle Scholar
  10. 10.
    Kadomtsev, B.B.: Plasma Turbulence. Academic, New York (1965)Google Scholar
  11. 11.
    Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 16550(1–4) (2001)CrossRefGoogle Scholar
  12. 12.
    Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)CrossRefMATHGoogle Scholar
  13. 13.
    Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77, 301–312 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Manevitch, L.I., Kovaleva, A., Shepelev, D.S.: Non-smooth approximations of the limiting phase trajectories for the duffing oscillator near 1:1 resonance. Physica D 240, 1–12 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Starosvetsky, Y., Manevitch, L.I.: Non-stationary regimes in a duffing oscillator subject to biharmonic forcing near a primary resonance. Phys. Rev. E 83, 046211(1–14) (2011)CrossRefGoogle Scholar
  16. 16.
    Manevitch, L.I., Kovaleva, M.A., Pilipchuk, V.N.: Non-conventional synchronization of weakly coupled active oscillators. Eur. Phys. Lett. 101, 50002(1–5) (2013)CrossRefGoogle Scholar
  17. 17.
    Manevitch, L.I., Kovaleva, A.: Nonlinear energy transfer in classical and quantum systems. Phys. Rev. E 87, 022904(1–12) (2013)CrossRefGoogle Scholar
  18. 18.
    Starosvetsky, Y., Ben-Meir, Y.: Non-stationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum. Phys. Rev. E 87, 062919(1–18) (2013)CrossRefGoogle Scholar
  19. 19.
    Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82, 036602(1–9) (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kovaleva, A., Manevitch, L.I.: Classical analog of quasilinear Landau–Zener tunneling. Phys. Rev. E 85, 016202(1–8) (2012)Google Scholar
  21. 21.
    Kovaleva, A., Manevitch, L.I., Kosevich, Y.A.: Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters. Phys. Rev. E 83, 026602(1–12) (2011)Google Scholar
  22. 22.
    Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79(1), 011012 (2012)CrossRefGoogle Scholar
  23. 23.
    Sigalov, G., Gendelman, O.V., AL-Shudeifat, M., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69, 1693–1704 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sigalov, G., Gendelman, O.V., AL-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling. Chaos 22, 013118(1–10) (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Krishnan, R., Shirota, S., Tanaka, Y., Nishiguchi, N.: High-efficient acoustic wave rectifier. Solid State Commun. 144, 194–197 (2007)CrossRefGoogle Scholar
  26. 26.
    Zhu, X., Zou, X., Liang, B., Cheng, J.: One-way mode transmission in one dimensional phononic crystal plates. J. Appl. Phys. 108, 142909(1–5) (2010)Google Scholar
  27. 27.
    Li, X.-F., Ni, X., Feng, L., Lu, M.-H., He, C., Chen, Y.-F.: Tunable uni-directional sound propagation through a sonic crystal—based acoustic diode. Phys. Rev. Lett. 106, 084301(1–4) (2011)Google Scholar
  28. 28.
    Danworaphong, S., Kelf, T.A., Matsuda, O., Tomoda, M., Tanaka, Y., Nishiguchi, N., Wright, O.B., Nishijima, Y., Ueno, K., Juodkazis, S., Misawa, H.: Real-time imaging of acoustic rectification. Appl. Phys. Lett. 99, 201910 (2011)CrossRefGoogle Scholar
  29. 29.
    Sun, H.X., Zhang, D.Y., Shui, X.J.: A tunable acoustic diode made by a metal plate with periodical structure. Appl. Phys. Lett. 100, 103507(1–4) (2012)Google Scholar
  30. 30.
    Liang, B., Guo, X.S., Zhang, D., Cheng, J.C.: An acoustic rectifier. Nat. Mater. 9, 989–992 (2010)CrossRefGoogle Scholar
  31. 31.
    Boechler, N., Theocharis, G., Daraio, C.: Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665–668 (2011)CrossRefGoogle Scholar
  32. 32.
    Vorotnikov, K., Starosvetsky, Y.: Nonlinear energy channeling in the two-dimensional, locally resonant, unit-cell model. I. High energy pulsations and routes to energy localization. Chaos 25, 073106(1–14) (2015)Google Scholar
  33. 33.
    Vorotnikov, K., Starosvetsky, Y.: Nonlinear energy channeling in the two-dimensional, locally resonant, unit-cell model. II. Low energy excitations and uni-directional energy transport. Chaos 25, 073107(1–13) (2015)Google Scholar
  34. 34.
    Vorotnikov, K., Starosvetsky, Y.: Bifurcation structure of the special class of non-stationary regimes emerging in the 2D inertially coupled, unit-cell model: analytical study. J. Sound Vib. 377(1), 226–242 (2016)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Discipline of Mechanical EngineeringIndian Institute of TechnologyGandhinagarIndia
  2. 2.Faculty of Mechanical EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations