Advertisement

Full control of a quadrotor using parameter-scheduled backstepping method: implementation and experimental tests

  • 567 Accesses

  • 6 Citations

Abstract

This paper proposes a nonlinear controller for a quadrotor helicopter, under the control of which the system is globally asymptotically stabilized with good control quality. The proposed controller is synthesized by Command Filtered Backstepping method with a novel parameter scheduling scheme. By scheduling controller parameters within the system-stabilizing region, the convergence speeds of errors in each step are adaptively adjusted based on different flight conditions. Amplitudes of control signals are reduced during fast tracking progress to avoid actuator saturation, which is hardly modeled and may cause instability. The controller also allows more aggressive tuning that achieves better regulation accuracy. The technology to implement the proposed controller is illustrated in detail, and key parameters of quadrotor model and the actuator’s dynamics are identified by experiments. To validate the proposed method, experimental flight tests are conducted under three typical flight conditions. Results comparing to other methods such as PID, sliding mode control and dynamic surface control are demonstrated, showing that the proposed controller is practical to an actual quadrotor system and can achieve good control performance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  1. 1.

    Herwitz, S.R., Johnson, L.F., Dunagan, S.E., Higgins, R.G., Sullivan, D.V., Zheng, J., et al.: Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput. Electron. Agric. 44(1), 49–61 (2004)

  2. 2.

    Alexis, K., Nikolakopoulos, G., Tzes, A., Dritsas, L.: Coordination of Helicopter UAVs for Aerial Forest-Fire Surveillance. Applications of Intelligent Control to Engineering Systems. Springer, Netherlands (2009)

  3. 3.

    Caprari, G., Breitenmoser, A., Fischer, W., Hürzeler, C., Tâche, F., Siegwart, R., et al.: Highly compact robots for inspection of power plants. Int. Conf. Appl. Robot. Power Ind. 29, 1–6 (2010)

  4. 4.

    Wallar, A., Plaku, E., Sofge, D.A.: Reactive motion planning for unmanned aerial surveillance of risk-sensitive areas. IEEE Trans. Autom. Sci. Eng. 12(3), 969–980 (2015)

  5. 5.

    Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. IEEE/RSJ Int. Conf. Intell. Robots Syst. 3, 2451–2456 (2004)

  6. 6.

    Li, Y., Song, S.: A survey of control algorithms for quadrotor unmanned helicopter. In: IEEE Fifth International Conference on Advanced Computational Intelligence, vol. 413, pp. 365–369 (2012)

  7. 7.

    Gonzalez-Vazquez, S., Moreno-Valenzuela, J.: A new nonlinear PI/PID controller for quadrotor posture regulation. In: Electronics, Robotics and Automotive Mechanics Conference, pp. 642–647 (2010)

  8. 8.

    Salih, A.L., Moghavvemi, M., Mohamed, H.A., Gaeid, K.S.: Flight PID controller design for a UAV quadrotor. Sci. Res. Essays 5(23), 3660–3667 (2010)

  9. 9.

    Minh, L.D., Ha, C.: Modeling and control of quadrotor MAV using vision-based measurement. In: International Forum on Strategic Technology, IFOST 2010, pp. 70–75 (2010)

  10. 10.

    Rinaldi, F., Chiesa, S., Quagliotti, F.: Linear quadratic control for quadrotors UAVs dynamics and formation flight. J. Intell. Robot. Syst. 70(1–4), 203–220 (2013)

  11. 11.

    Mobayen, S.: Fast terminal sliding mode tracking of non-holonomic systems with exponential decay rate. IET Control Theory Appl. 9(8), 1294–1301 (2015)

  12. 12.

    Mobayen, S.: An adaptive chattering-free PID sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems. Nonlinear Dyn. 82(1), 1–8 (2015)

  13. 13.

    Mobayen, S.: Finite-time tracking control of chained-form non-holonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80(1–2), 1–15 (2015)

  14. 14.

    Mobayen, S.: An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems. Nonlinear Dyn. 82(1), 1–12 (2015)

  15. 15.

    Shakev, N.G., Topalov, A.V., Kaynak, O., Shiev, K.B.: Comparative results on stabilization of the quad-rotor rotorcraft using bounded feedback controllers. J. Intell. Robot. Syst. 65(1–4), 389–408 (2012)

  16. 16.

    Choi, Y.C., Ahn, H.S.: Nonlinear control of quadrotor for point tracking: actual implementation and experimental tests. IEEE/ASME Trans. Mechatron. 20(3), 1179–1192 (2015)

  17. 17.

    Xu, B., Huang, X., Wang, D., Sun, F.: Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J. Control 16(1), 162–174 (2014)

  18. 18.

    Ramirez-Rodriguez, H., Parra-Vega, V., Sanchez-Orta, A., Garcia-Salazar, O.: Robust backstepping control based on integral sliding modes for tracking of quadrotors. J. Intell. Robot. Syst. 73(1–4), 51–66 (2014)

  19. 19.

    Lu, H., Liu, C., Coombes, M., Guo, L., Chen, W.H.: Online optimisation-based backstepping control design with application to quadrotor. IET Control Theory Appl. 10(14), 1601–1611 (2016)

  20. 20.

    Chen, F., Lei, W., Zhang, K., Tao, G., Jiang, B.: A novel nonlinear resilient control for a quadrotor uav via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 85(2), 1281–1295 (2016)

  21. 21.

    Madani, T., Benallegue, A.: Backstepping control for a quadrotor helicopter. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3255–3260 (2006)

  22. 22.

    Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

  23. 23.

    Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

  24. 24.

    Farrell, J.A., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)

  25. 25.

    Dong, W., Farrell, J.A., Polycarpou, M.M., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2012)

  26. 26.

    Zuo, Z.: Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl. 19(11), 2343–2355 (2010)

  27. 27.

    Zhao, S., Dong, W., Farrell, J.A.: Quaternion-based trajectory tracking control of VTOL-UAVs using command filtered backstepping. Proc. Am. Control Conf. 45, 1018–1023 (2013)

  28. 28.

    Zhang, Y., Fang, Z., Li, H.: Extreme learning machine assisted adaptive control of a quadrotor helicopter. Math. Probl. Eng. 2015(2015), 905184 (2015)

  29. 29.

    Alexis, K., Nikolakopoulos, G., Tzes, A.: Model predictive quadrotor control: attitude, altitude and position experimental studies. IET Control Theory Appl. 6(12), 1812–1827 (2012)

  30. 30.

    Wang, T.M., Wang, L.W., Liang, J.H.: Autonomous control and trajectory tracking of quadrotor helicopter. Comput. Mod. 3, 251–255 (2012)

  31. 31.

    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2002)

  32. 32.

    Zhu, Y.: Multivariable system identification for process control. Int. J. Model. Identif. Control 6(1), 335–344 (2001)

  33. 33.

    Jardin, M., Mueller, E.: Optimized measurements of UAV mass moment of inertia with a bifilar pendulum. J. Aircr. 46(3), 763–775 (2013)

Download references

Author information

Correspondence to Yu Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 61673341) and Fundamental Research Funds for the Central Universities (2016QNA5010).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 37095 KB)

Supplementary material 2 (mp4 39590 KB)

Supplementary material 1 (mp4 37095 KB)

Supplementary material 2 (mp4 39590 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, Y. & Li, P. Full control of a quadrotor using parameter-scheduled backstepping method: implementation and experimental tests. Nonlinear Dyn 89, 1259–1278 (2017) doi:10.1007/s11071-017-3514-1

Download citation

Keywords

  • Backstepping
  • Command filter
  • Adaptive
  • Schedule
  • Quadrotor
  • Experiment