Advertisement

Nonlinear Dynamics

, Volume 89, Issue 1, pp 577–586 | Cite as

Hidden chaotic attractors in fractional-order systems

  • Marius-F. DancaEmail author
Original Paper

Abstract

In this paper, we present a scheme for uncovering hidden chaotic attractors in nonlinear autonomous systems of fractional order. The stability of equilibria of fractional-order systems is analyzed. The underlying initial value problem is numerically integrated with the predictor-corrector Adams-Bashforth-Moulton algorithm for fractional-order differential equations. Three examples of fractional-order systems are considered: a generalized Lorenz system, the Rabinovich-Fabrikant system and a non-smooth Chua system.

Keywords

Hidden attractor Self-excited attractor Fractional-order system Generalized Lorenz system Rabinovich-Fabrikant system Non-smooth Chua system 

Notes

Acknowledgements

MF Danca is supported by Tehnic B SRL.

References

  1. 1.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D 241(18), 1482–1486 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phy. J. Spec. Top. 224(8), 1421–1458 (2015)CrossRefGoogle Scholar
  3. 3.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kuznetsov, N.V.: Hidden attractors in fundamental problems and engineering models: a short survey. In: Lecture Notes Electrical Engineering, vol. 371, p. 13. (2016)Google Scholar
  5. 5.
    Dudkowski, D., Prasad, A., Kapitaniak, T.: Perpetual points and hidden attractors in dynamical systems. Phys. Lett. A 379(40–41), 2591–2596 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phy. J. Spec. Top. 224(8), 1469–1476 (2015)CrossRefGoogle Scholar
  7. 7.
    Shahzad, M., Pham, V.T., Ahmad, M., Jafari, S., Hadaeghi, F.: Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur. Phy. J. Spec. Top. 224(8), 1637–1652 (2015)CrossRefGoogle Scholar
  8. 8.
    Brezetskyi, S., Dudkowski, D., Kapitaniak, T.: Rare and hidden attractors in Van der Pol-Duffing oscillators. Eur. Phy. J. Spec. Top. 224(8), 1459–1467 (2015)CrossRefGoogle Scholar
  9. 9.
    Cafagna, D., Grassi, G.: Fractional-order systems without equilibria: the first example of hyperchaos and its application to synchronization. Chin. Phys. B 24(8), 080502 (2015)CrossRefGoogle Scholar
  10. 10.
    Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, M., Li, M., Yu, Q., Bao, B., Xu, Q., Wang, J.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua s circuit. Nonlinear Dyn. 81(1–2), 215–226 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, Z., Sun, W., Wei, Z., Zhang, S.: Dynamics and delayed feedback control for a 3D jerk system with hidden attractor. Nonlinear Dyn. 82(1–2), 577–588 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13–23 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sprott, J.C., Jafari, S., Pham, V.-T., Hosseini, Z.S.: A chaotic system with a single unstable node. Phys. Lett. A 379(36), 2030–2036 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Heath, W.P., Carrasco, J., de la Sen, M.: Second-order counterexamples to the discrete-time Kalman conjecture. Automatica 60, 140–144 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N.: Hidden attractor in the Rabinovich system, arXiv:1504.04723v1 (2015)
  17. 17.
    Kuznetsov, N.V., Leonov, G.A.: Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors. In: IFAC Proceedings Volumes, 19th IFAC World Congress, vol. 47(3), pp. 5445–5454 (2014)Google Scholar
  18. 18.
    Danca, M.-F.: Hidden transient chaotic attractors of Rabinovich-Fabrikant system. Nonlinear Dyn. 86(2), 1263–1270 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Leonov, G.A., Kuznetsov, N.V.: On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. Appl. Math. Comput. 256, 334–343 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kuznetsov, N.V., Kuznetsova, O.A, Leonov, G.A., Neittaanmuaki, P., Yuldashev, M.V., Yuldashev, R.V.: Limitations of the classical phase-locked loop analysis. In: Proceeding-IEEE International Symposion on Circuits and Systems, pp. 533-536, Art. No. 7168688 (2015)Google Scholar
  21. 21.
    Leonov, G.A., Kuznetsov, N.V., Kiseleva, M.A., Solovyeva, E.P., Zaretskiy, A.M.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77(1–2), 277–288 (2014)CrossRefGoogle Scholar
  22. 22.
    Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., Pogromsky, A.Y.: Hidden oscillations in aircraft flight control system with input saturation. IFAC Proc. Vol. 46(12), 75–79 (2013)CrossRefGoogle Scholar
  23. 23.
    Sabatier, J., Agrawal, O.P., Machado, Tenreiro Machado, J.A.: Advances in fractional calculus; Theoretical developments and applications, Physics and Engineering Series, Springer, Berlin, (2007)Google Scholar
  24. 24.
    Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 285(1–4), 376–384 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Danbury (2006)Google Scholar
  26. 26.
    Atanacković, T.M.: On a distributed derivative model of a viscoelastic body. C. R. Mecanique 331(10), 687–692 (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelasticallydamped structures. J. Guid. Control Dyn. 14(2), 304–311 (1991)CrossRefGoogle Scholar
  28. 28.
    Oustaloup, A.: La Derivation Non Entiere: Theorie, Synthese et Applications. Hermes, Paris (1995)zbMATHGoogle Scholar
  29. 29.
    Podlubny, I., Petrás̆, I., Vinagre, B.M., O’Leary, P., Dorcák, K.: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1), 281–296 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Laskin, N.: Fractional market dynamics. Phys. A 287(3–4), 482–492 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82(6), 1136–1139 (1999)CrossRefGoogle Scholar
  32. 32.
    Danca, M.-F., Diethlem, K.: Fractional-order attractors synthesis via parameter switchings. Commun. Nonlinear Sci. 15(12), 3745–3753 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Danca, M.-F., Garrappa, R., Tang, W.K.S., Chen, G.: Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching. Comput. Math. Appl. 66(5), 702–716 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Faieghi, M.R., Delavari, H.: Chaos in fractional-order Genesio-Tesi system and its synchronization. Commun. Nonlinear. Sci. 17(2), 731–741 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Tavazoei, M.S., Haeri, M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 45(8), 1886–1890 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kaslik, E., Sivasundaram, S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real 13(3), 1489–1497 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  38. 38.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2010)CrossRefzbMATHGoogle Scholar
  39. 39.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Amsterdam (2006)zbMATHGoogle Scholar
  40. 40.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, vol. 3. World Scientific (2012)Google Scholar
  41. 41.
    Hartley, T.T., Lorenzo, C.F., Trigeassou, J.C., Maamri, N.: Equivalence of history-function based and infinite-dimensional-state initializations for fractional-order operators. J. Comput. Nonlin. Dyn. 8(4), 041014 (2013)CrossRefGoogle Scholar
  42. 42.
    Diethelm, K.: An extension of the well-posedness concept for fractional differential equations of Caputo s type. Appl. Anal. 93, 2126 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Diethelm, K., Ford, N.J., Freed, A.D.: A Predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)Google Scholar
  44. 44.
    Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Phys. D 327(20), 2628–2637 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 367(1–2), 102–113 (2007)CrossRefzbMATHGoogle Scholar
  46. 46.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear. Sci. 28, 166 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Rabinovich, M.: Stochastic autooscillations and turbulence. Uspehi Physicheskih Nauk 125(1), 123–168 (1978). [in Russian]Google Scholar
  48. 48.
    Pikovski, A.S., Rabinovich, M.I., Trakhtengerts, V.I.: Onset of stochasticity in decay confinement of parametric instability. Sov. Phys. JETP 47, 715–719 (1978)Google Scholar
  49. 49.
    Glukhovsky, A.B., Dolzhansky, F.V.: Three component models of convection in a rotating fluid. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 16, 311–318 (1980)MathSciNetGoogle Scholar
  50. 50.
    Denisov, G.G.: On the rigid body rotation in resisting medium. Izv. Akad. Nauk SSSR Mekh. Tverd. Tela 4, 37–43 (1989). (in Russian)Google Scholar
  51. 51.
    Glukhovsky, A.B.: Nonlinear systems that are superpositions of gyrostats. Sov. Phys. Dokl. 27(10), 823–825 (1982)zbMATHGoogle Scholar
  52. 52.
    Dovzhenko, V.A., Dolzhansky, F.V.: Generating of the Vortices in Shear Flows. Theory and Experiment. Nauka, Moscow (1987). (in Russian)Google Scholar
  53. 53.
    Danca, M.-F., Feckan, M., Kuznetsov, N., Chen, G.: Looking more closely at the Rabinovich-Fabrikant system. Int. J. Bifurc. Chaos 26(2), 1650038 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Danca, M.-F., Kuznetsov, N., Chen, G.: Unusual dynamics and hidden attractors of the Rabinovich-Fabrikant system. submitted to Nonlinear DynamicGoogle Scholar
  55. 55.
    Kuznetsov, N.V.: Hidden attractors in fundamental problems and engineering models, arXiv:1510.04803v1 [nlin.CD]
  56. 56.
    Kuznetsov, N., Kuznetsov, O., Leonov, G., Vagaitsev, V.: Analytical-numerical method for attractor localization of generalized Chua’s system. IFAC Proc. Vol. 43(11), 29–33 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceAvram Iancu UniversityCluj-NapocaRomania
  2. 2.Romanian Institute for Science and TechnologyCluj-NapocaRomania

Personalised recommendations