Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lag synchronization for fractional-order memristive neural networks via period intermittent control

Abstract

In this paper, an intermittent control scheme is adopted to deal with the synchronization problem of fractional-order memristive neural networks(FMNNs) with switching jumps mismatch. Considering the inherent characteristic of FMNNs, a fractional-order differential inequality is introduced. Based on differential inclusions theory and the properties of Mittag Leffler function, some intermittent synchronization criteria are derived. The synchronization regain which is related to order \(\alpha \), control period T and the control width \(\delta \) is discussed in details. In addition, the lag complete synchronization criteria of FMNNs with switching jumps match are also obtained by period intermittent control. Finally, numerical simulations are presented to verify the effectiveness of the theoretical analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

  2. 2.

    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Springer, Berlin (2009)

  3. 3.

    Bao, H.B., Park, J.H., Cao, J.D.: Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn. 82(3), 1343–1354 (2015)

  4. 4.

    Bao, H.B., Park, J.H., Cao, J.D.: Exponential synchronization of coupled Stochastic Memristor-Based Neural Networks With Time-Varying Probabilistic Delay Coupling and Impulsive Delay. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 190–201 (2016)

  5. 5.

    Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)

  6. 6.

    Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 59(5), 1614–1620 (2010)

  7. 7.

    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

  8. 8.

    Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

  9. 9.

    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

  10. 10.

    Ding, S.B., Wang, Z.S.: Lag quasi-synchronization for memristive neural networks with switching jumps mismatch. Neural Comput. Appl. 1–12 (2016). doi:10.1007/s00521-016-2291-y

  11. 11.

    Duan, S., Hu, X., Dong, Z., et al.: Memristor-based cellular nonlinear/neural network: design, analysis, and applications. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1202–1213 (2015)

  12. 12.

    Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1), 650–659 (2015)

  13. 13.

    Feng, J., Yang, P., Zhao, Y.: Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control. Appl. Math. Comput. 291, 52–68 (2016)

  14. 14.

    Filippov, A.F.: Differential equations with discontinuous righthand sides. In: Arscott, F.M. (ed.) Mathematics and its Applications (Soviet Series). Kluwer Academic Publisher, Boston (1988)

  15. 15.

    Forti, M., Nistri, P., Quincampoix, M.: Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans. Circuits Syst. I: Regul. Pap. 51(9), 1741–1754 (2004)

  16. 16.

    Forti, M., Nistri, P., Papini, D.: Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans. Neural Netw. 16(6), 1449–1463 (2005)

  17. 17.

    Henderson, J., Ouahab, A.: Fractional functional differential inclusions with finite delay. Nonlinear Anal. Theory Methods Appl. 70(5), 2091–2105 (2009)

  18. 18.

    Hu, J., Wang, J.: Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays. IEEE International Joint Conference on Neural Networks, 1–8 (2010)

  19. 19.

    Isfer, L.A.D., Lenzi, E.K., Teixeira, G.M., Lenzi, M.K.: Fractional control of an industrial furnace. Acta Sci. Technol. 32(3), 279–285 (2010)

  20. 20.

    Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

  21. 21.

    Li, N., Cao, J.D.: Lag synchronization of memristor-based coupled neural networks via \(\omega \)-measure. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 686–697 (2016)

  22. 22.

    Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

  23. 23.

    Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9–12 (2010)

  24. 24.

    Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)

  25. 25.

    Pldlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

  26. 26.

    Sharifi, M.J., Banadaki, Y.M.: General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells. J. Circuits Syst. Comput. 19, 407–424 (2010)

  27. 27.

    Shi, L., Yang, X., Li, Y., et al.: Finite-time synchronization of nonidentical chaotic systems with multiple time-varying delays and bounded perturbations. Nonlinear Dyn. 83(1–2), 75–87 (2016)

  28. 28.

    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

  29. 29.

    Szabo, T.L., Wu, J.: A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107(5), 2437–2446 (2000)

  30. 30.

    Toledo, H.R., Rico, R.V., Iglesias, S.G.A., Diwekar, U.M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: fractional models for biological reactions. Chem. Eng. Sci. 117, 217–228 (2014)

  31. 31.

    Tour, J.M., He, T.: Electronics: the fourth element. Nature 453, 42–43 (2008)

  32. 32.

    Velmurugan, G., Rakkiyappan, R.: Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. Nonlinear Dyn. 83(1–2), 419–432 (2016)

  33. 33.

    Wang, L.M., Shen, Y., Yin, Q., Zhang, G.D.: Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2033–2042 (2015)

  34. 34.

    Wang, L., Shen, Y., Yin, Q., Zhang, G.: Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 2033–2042 (2015)

  35. 35.

    Wen, S., Zeng, Z., Huang, T., Zhang, Y.: Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators. IEEE Trans. Fuzzy Syst. 22(6), 1704–1713 (2014)

  36. 36.

    Wen, S., Zeng, Z., Huang, T., et al.: Lag synchronization of switched neural networks via neural activation function and applications in image encryption. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1493–1502 (2015)

  37. 37.

    Wen, S., Zeng, Z., Chen, M.Z., et al.: Synchronization of switched neural networks with communication delays via the event-triggered control. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–10 (2016)

  38. 38.

    Wen, G., Hu, G., Hu, J., et al.: Frequency regulation of source-grid-load systems: a compound control strategy. IEEE Trans. Ind. Inform. 12(1), 69–78 (2016)

  39. 39.

    Wen, S., Huang, T., Yu, X., Chen, M.Z., Zeng, Z.: Sliding-mode control of memristive Chua’s systems via the event-based method. IEEE Trans. Circuits Syst. II: Express Briefs 64(1), 81–85 (2017)

  40. 40.

    Wong, R., Zhao, Y.Q.: Exponential asymptotics of the Mittag-Leffler function. Constr. Approxi. 18(3), 355–385 (2002)

  41. 41.

    Wu, A., Zeng, Z.: Anti-synchronization control of a class of memristive recurrent neural networks. Commun. Nonlinear Sci. Numer. Simul. 18(2), 373–385 (2013)

  42. 42.

    Yu, J., Hu, C., Jiang, H., Fan, X.: Projective synchronization for fractional neural networks. Neural Netw. 49, 87–95 (2014)

  43. 43.

    Zhang, S., Yu, Y., Wang, Q.: Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions. Neurocomputing 171, 1075–1084 (2016)

  44. 44.

    Zhang, G., Shen, Y.: Exponential stabilization of memristor-based chaotic neural networks with time-varying delays via intermittent control. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1431–1441 (2015)

Download references

Author information

Correspondence to Yongqing Yang.

Additional information

This work was jointly supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20161126, the Graduate Innovation Project of Jiangsu Province under Grant No. KYLX16_0778 and the Fundamental Research Funds for the Central Universities JUSRP51317B.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, Y. & wang, F. Lag synchronization for fractional-order memristive neural networks via period intermittent control. Nonlinear Dyn 89, 367–381 (2017). https://doi.org/10.1007/s11071-017-3459-4

Download citation

Keywords

  • Lag synchronization
  • Fractional-order memristive neural networks
  • Switching jumps mismatch