Nonlinear Dynamics

, Volume 88, Issue 4, pp 3003–3015

The effect of longitudinal high-frequency in-plane vibrations on a 1-DoF friction oscillator with compliant contact

Original Paper
  • 154 Downloads

Abstract

The effect of vibrational smoothing of dry friction has been studied intensively in the past. High-frequency vibrations have been shown to reduce average friction forces and thus smooth the effective characteristics of dry friction. Consequently, undesired friction-induced phenomena, such as friction-induced vibrations or stick-slip motion, can be avoided. While most publications focus on rigid contacts using classical Coulomb friction models, a class of dynamic friction models, namely the Dahl, LuGre and the elasto-plastic model proposed by Dupont et al., is considered here in order to account for contact compliance. Based on a simple 1-DoF friction oscillator, the effect of longitudinal high-frequency vibrations is investigated. An averaging procedure is applied in order to derive the effective friction–velocity characteristics of the system. Using a Galerkin procedure, analytical approximations can be derived for the Dahl and the LuGre friction model, while numerical calculations have to be performed for the elasto-plastic model. In order to validate the results, full timescale numerical simulations are performed. When accounting for contact compliance, the smoothing effect can still be observed. However, the calculated friction forces are higher compared to the classical results using Coulomb friction. Hence, the assumption of a rigid contact leads to overestimation of the smoothing effect.

Keywords

Dry friction Vibrational smoothing Friction reduction Averaging 

References

  1. 1.
    Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level for dry friction force dynamics. Tribol. Lett. 16, 81–93 (2004)CrossRefGoogle Scholar
  2. 2.
    Al-Bender, F., Lampaert, V., Swevers, J.: The generalized Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Autom. Control 50, 1883–1887 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30, 1093–1138 (1994)CrossRefMATHGoogle Scholar
  4. 4.
    Ashida, Y., Aoyama, H.: Press forming using ultrasonic vibration. J. Mater. Process. Technol. 187, 118–122 (2007)CrossRefGoogle Scholar
  5. 5.
    Bliman, P.-A.J.: Mathematical study of the Dahl’s friction model. Eur. J. Mech. A Solids 11, 835–848 (1992)MathSciNetMATHGoogle Scholar
  6. 6.
    de Wit, Canudas, Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chatterjee, S., Singha, T.K., Karmakar, S.K.: Effect of high-frequency excitation on a class of mechanical systems with dynamic friction. J. Sound Vib. 269, 61–89 (2004)CrossRefGoogle Scholar
  8. 8.
    Dahl, P.R.: Solid friction damping of mechanical vibrations. AIAA J. 14, 1675–1682 (1976)CrossRefGoogle Scholar
  9. 9.
    Dupont, P., Hayward, V., Armstrong, B., Altpeter, F.: Single state elastoplastic friction models. IEEE Trans. Autom. Control 47, 787–792 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feeny, B.F., Moon, F.C.: Quenching stick-slip chaos with dither. J. Sound Vib. 237, 173–180 (2000)CrossRefGoogle Scholar
  11. 11.
    Fidlin, A., Thomsen, J.J.: Non-trivial effects of high-frequency excitation for strongly damped mechanical systems. Int. J. Non linear Mech. 43, 569–578 (2008)CrossRefGoogle Scholar
  12. 12.
    Gutowski, P., Leus, M.: The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribol. Int. 55, 108–118 (2012)CrossRefGoogle Scholar
  13. 13.
    Haessig, D.A., Friedland, B.: On the modeling and simulation of friction. J. Dyn. Syst. Meas. Control 113, 354–362 (1991)CrossRefGoogle Scholar
  14. 14.
    Hetzler, H., Schwarzer, D., Seemann, W.: Analytical investigation of steady-state stability and Hopf-bifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise. Commun. Nonlinear Sci. Numer. Simul. 12, 83–99 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hoffmann, N., Wagner, N., Gaul, L.: Quenching mode-coupling friction-induced instability using high-frequency dither. J. Sound Vib. 279, 471–480 (2005)CrossRefGoogle Scholar
  16. 16.
    Hoffmann, N.: Linear stability of steady sliding in point contacts with velocity dependent and LuGre type friction. J. Sound Vib. 301, 1023–1034 (2007)CrossRefGoogle Scholar
  17. 17.
    Ibrahim, R.A.: Friction-induced vibration, chatter, squeal and chaos—part II: dynamics and modeling. Appl. Mech. Rev. 47, 227–253 (1994)CrossRefGoogle Scholar
  18. 18.
    Kang, J., Krousgrill, C.M., Sadeghi, F.: Dynamic instability of a thin circular plate with friction interface and its application to disc brake squeal. J. Sound Vib. 316, 164–179 (2008)CrossRefGoogle Scholar
  19. 19.
    Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267, 105–166 (2003)CrossRefGoogle Scholar
  20. 20.
    Kumar, V.C., Hutchings, I.M.: Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribol. Int. 37, 833–840 (2004)CrossRefGoogle Scholar
  21. 21.
    Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the Leuven integrated friction model structure. IEEE Trans. Autom. Control 47, 683–687 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Littmann, W., Storck, H., Wallaschek, J.: Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations. Arch. Appl. Mech. 71, 549–554 (2001)CrossRefGoogle Scholar
  23. 23.
    Massi, F., Baillet, L., Giannini, O., Sestieri, A.: Brake squeal: linear and nonlinear numerical approaches. Mech. Syst. Signal Process. 21, 2374–2393 (2007)CrossRefGoogle Scholar
  24. 24.
    Olsson, H., Åström, K.J., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4, 176–195 (1998)CrossRefMATHGoogle Scholar
  25. 25.
    Pervozvanski, A.A., Canudas de Wit, C.: Asymptotic analysis of the dither effect in systems with friction. Automatica 39, 105–113 (2002)CrossRefMATHGoogle Scholar
  26. 26.
    Pohlman, R., Lehfeldt, E.: Influence of ultrasonic vibration on metallic friction. Ultrasonics 4, 178–185 (1966)CrossRefGoogle Scholar
  27. 27.
    Popov, V.L., Starcevic, J., Filippov, A.E.: Influence of ultrasonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry friction processes. Tribol. Lett. 39, 25–30 (2010)CrossRefGoogle Scholar
  28. 28.
    Rice, J.R., Ruina, A.L.: Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983)CrossRefMATHGoogle Scholar
  29. 29.
    Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983)CrossRefGoogle Scholar
  30. 30.
    Siegert, K., Ulmer, J.: Influencing the friction in metal forming processes by superimposing ultrasonic waves. CIRP Ann. Manuf. Technol. 50, 195–200 (2001)CrossRefGoogle Scholar
  31. 31.
    Siegert, K., Ulmer, J.: Superimposing ultrasonic waves on the dies in tube and wire drawing. J. Eng. Mater. Technol. 123, 517–523 (2001)CrossRefGoogle Scholar
  32. 32.
    Storck, H., Littmann, W., Wallaschek, J., Mracek, M.: The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors. Ultrasonics 40, 379–383 (2002)CrossRefGoogle Scholar
  33. 33.
    Swevers, J., Al-Bender, F., Ganseman, C.G., Prajogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Autom. Control 45, 675–686 (2000)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Teidelt, E., Starcevic, J., Popov, V.L.: Influence of ultrasonic oscillation on static and sliding friction. Tribol. Lett. 48, 51–62 (2012)Google Scholar
  35. 35.
    Thomsen, J.J.: Using fast vibrations to quench friction-induced oscillations. J. Sound Vib. 228, 1079–1102 (1999)CrossRefGoogle Scholar
  36. 36.
    Tsai, C.C., Tseng, C.H.: The effect of friction reduction in the presence of in-plane vibrations. Arch. Appl. Mech. 75, 164–176 (2006)CrossRefMATHGoogle Scholar
  37. 37.
    von Wagner, U., Hochlehnert, D., Hagedorn, P.: Minimal models for disk brake squeal. J. Sound Vib. 302, 527–539 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Simon Kapelke
    • 1
  • Wolfgang Seemann
    • 1
  • Hartmut Hetzler
    • 2
  1. 1.Institute of Engineering MechanicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of MechanicsUniversity of KasselKasselGermany

Personalised recommendations