Group preserving scheme and reproducing kernel method for the Poisson–Boltzmann equation for semiconductor devices
- 173 Downloads
- 4 Citations
Abstract
This paper introduces that the nonlinear Poisson–Boltzmann equation for semiconductor devices describing potential distribution in a double-gate metal oxide semiconductor field effect transistor (DG-MOSFET) is exactly solvable. The DG-MOSFET shows one of the most advanced device structures in semiconductor technology and is a primary focus of modeling efforts in the semiconductor industry. Lie symmetry properties of this model is investigated in order to extract some exact solutions. The reproducing kernel Hilbert space method and group preserving scheme also have been applied to the nonlinear equation. Numerical results show that the present methods are very effective.
Keywords
Group preserving scheme Poisson–Boltzmann equation Reproducing kernel method Lie symmetry analysisMathematics Subject Classification
15A60Notes
Compliance with ethical standards
Conflict of interests
The authors declare that they do not have any competing or conflict of interests.
References
- 1.Abbasbandy, S., Azarnavid, B.: Some error estimates for the reproducing kernel Hilbert spaces method. J. Comput. Appl. Math. 296, 789–797 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Abbasbandy, S., Hashemi, M.S.: Group preserving scheme for the cauchy problem of the laplace equation. Eng. Anal. Bound. Elem 35, 1003–1009 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Akgül, A.: New reproducing kernel functions. Math. Probl. Eng., 10 (2015). Art. ID 158134Google Scholar
- 4.Akgül, A., Inc, M., Karatas, E., Baleanu, D.: Numerical solutions of fractional differential equations of Lane–Emden type by an accurate technique. Adv. Differ. Equ. 2015(12), 220 (2015)MathSciNetCrossRefGoogle Scholar
- 5.Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dynamics 84(3), 1553–1567 (2016)MathSciNetCrossRefGoogle Scholar
- 7.Biswas, A., Kara, Abdul H., Moraru, L., Bokhari, A.H., Zaman, F.D.: Conservation laws of coupled Klein–Gordon equations with cubic and power law nonlinearities. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 15(2), 123–129 (2014)MathSciNetGoogle Scholar
- 8.Biswas, A., Mirzazadeh, M., Eslami, M.: Soliton solution of generalized chiral nonlinear Schrödinger’s equation with time-dependent coefficients. Acta Phys. Pol. B 45(4), 849–866 (2014)CrossRefGoogle Scholar
- 9.Biswas, A., Song, M., Triki, H., Kara, A.H., Ahmed, B.S., Strong, A., Hama, A.: Solitons, shock waves, conservation laws and bifurcation analysis of Boussinesq equation with power law nonlinearity and dual dispersion. Appl. Math. Inf. Sci. 8(3), 949–957 (2014)MathSciNetCrossRefGoogle Scholar
- 10.Biswas, A., Song, M., Zerrad, E.: Bifurcation analysis and implicit solution of Klein–Gordon equation with dual-power law nonlinearity in relativistic quantum mechanics. Int. J. Nonlinear Sci. Numer. Simul. 14(5), 317–322 (2013)MathSciNetCrossRefGoogle Scholar
- 11.Cao, J., Song, M., Biswas, A.: Topological solitons and bifurcation analysis of the PHI-four equation. Bull. Malays. Math. Sci. Soc. (2) 37(4), 1209–1219 (2014)MathSciNetzbMATHGoogle Scholar
- 12.Chang, C.-W., Liu, Chein-Shan: A backward group preserving scheme for multi-dimensional backward heat conduction problems. CMES Comput. Model. Eng. Sci. 59(3), 239–274 (2010)MathSciNetzbMATHGoogle Scholar
- 13.Chang, C.-W., Liu, C.-S.: The backward group preserving scheme for multi-dimensional nonhomogeneous and nonlinear backward wave problems. Appl. Math. Model. 38(15–16), 4027–4048 (2014)MathSciNetCrossRefGoogle Scholar
- 14.Chen, Y.-W., Liu, C.-S., Chang, J.-R.: Applications of the modified Trefftz method for the Laplace equation. Eng. Anal. Bound. Elem. 33(2), 137–146 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Cui, M., Lin, Yingzhen: Nonlinear numerical analysis in the reproducing kernel space. Nova Science Publishers Inc., New York (2009)zbMATHGoogle Scholar
- 16.Ekici, M., Mirzazadeh, M., Eslami, M.: Solitons and other solutions to boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dynamics 84(2), 669–676 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Geng, F., Cui, M., Zhang, Bo: Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods. Nonlinear Anal. Real World Appl. 11(2), 637–644 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Hashemi, M.S.: Constructing a new geometric numerical integration method to the nonlinear heat transfer equations. Commun. Nonlinear Sci. Numer. Simul. 22(1), 990–1001 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Hashemi, M.S., Baleanu, D.: Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line. J. Comput. Phys. 316, 10–20 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Hashemi, M.S., Baleanu, D., Parto-Haghighi, M.: A lie group approach to solve the fractional poisson equation. Rom. J. Phys. 60, 1289–1297 (2015)Google Scholar
- 21.Hashemi, M.S., Haji-Badali, A., Vafadar, P.: Group invariant solutions and conservation laws of the fornberg-whitham equation. Z. Naturforsch. A 69(8–9), 489–496 (2014)Google Scholar
- 22.Hashemi, M.S., Nucci, M.C., Abbasbandy, S.: Group analysis of the modified generalized vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18, 867–877 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Inc, M., Akgül, A., Geng, Fazhan: Reproducing kernel Hilbert space method for solving Bratu’s problem. Bull. Malays. Math. Sci. Soc. 38(1), 271–287 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Inc, M., Akgül, A., Kılıçman, A.: Numerical solutions of the second-order one-dimensional telegraph equation based on reproducing kernel Hilbert space method. Abstr. Appl. Anal., 13, (2013). Art. ID 768963Google Scholar
- 25.Krishnan, E.V., Ghabshi, M.A., Mirzazadeh, M., Bhrawy, A.H., Biswas, A., Belic, M.: Optical solitons for quadratic law nonlinearity with five integration schemes. J. Comput. Theor. Nanosci. 12(11), 4809–4821 (2015)Google Scholar
- 26.Lee, H.-C., Chen, C.-K., Hung, Chen-I: A modified group-preserving scheme for solving the initial value problems of stiff ordinary differential equations. Appl. Math. Comput. 133(2–3), 445–459 (2002)MathSciNetzbMATHGoogle Scholar
- 27.Lee, H.-C., Liu, Chein-Shan: The fourth-order group preserving methods for the integrations of ordinary differential equations. CMES Comput. Model. Eng. Sci. 41(1), 1–26 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Shijun, L.: Beyond Perturbation, Volume 2 of CRC Series: Modern Mechanics and Mathematics. Introduction to the homotopy analysis method. Chapman & Hall/CRC, Boca Raton (2004)Google Scholar
- 29.Liu, C.-S., Hong, H.-K., Liou, D.-Y.: Two-dimensional friction oscillator: group-preserving scheme and handy formulae. J. Sound Vib. 266(1), 49–74 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Liu, Chein-Shan: Cone of non-linear dynamical system and group preserving schemes. Int. J. Non-Linear Mech. 36(7), 1047–1068 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Liu, Chein-Shan: Two-dimensional bilinear oscillator: group-preserving scheme and steady-state motion under harmonic loading. Int. J. Non-Linear Mech. 38(10), 1581–1602 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Liu, Chein-Shan: Nonstandard group-preserving schemes for very stiff ordinary differential equations. CMES Comput. Model. Eng. Sci. 9(3), 255–272 (2005)MathSciNetzbMATHGoogle Scholar
- 33.Liu, C.-S., Chang, Chih-Wen: A novel mixed group preserving scheme for the inverse Cauchy problem of elliptic equations in annular domains. Eng. Anal. Bound. Elem. 36(2), 211–219 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Liu, C.-S., Chang, C.-W., Chang, J.-R.: The backward group preserving scheme for 1D backward in time advection-dispersion equation. Numer. Methods Partial Differ. Equ. 26(1), 61–80 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 35.Liu, C.-S., Ku, Y.-L.: A combination of group preserving scheme and Runge-Kutta method for the integration of Landau-Lifshitz equation. CMES Comput. Model. Eng. Sci. 9(2), 151–177 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 36.Mirzazadeh, M.: Analytical study of solitons to nonlinear time fractional parabolic equations. Nonlinear Dynamics 85(4), 2569–2576 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 37.Mirzazadeh, M., Biswas, A.: Optical solitons with spatio-temporal dispersion by first integral approach and functional variable method. Optik-Int. J. Light Electron Opt. 125(19), 5467–5475 (2014)CrossRefGoogle Scholar
- 38.Mirzazadeh, M., Eslami, M., Bhrawy, A.H., Biswas, A.: Integration of complex-valued kleingordon equation in\( phi\)-4 field theory. Rom. J. Phys 60(3–4), 293 (2015)Google Scholar
- 39.Morris, R.M., Kara, A.H.: Biswas, Anjan: An analysis of the Zhiber-Shabat equation including Lie point symmetries and conservation laws. Collect. Math. 67(1), 55–62 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 40.Nassar, C.J., Revelli, J.F., Bowman, R.J.: Application of the homotopy analysis method to the Poisson–Boltzmann equation for semiconductor devices. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2501–2512 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 41.Shivanian, E., Abbasbandy, S., Alhuthali, M.S.: Exact analytical solution to the Poisson–Boltzmann equation for semiconductor devices. Eur. Phys. J. Plus 129, 104 (2014)CrossRefGoogle Scholar
- 42.Song, M., Biswas, Anjan: Topological defects and bifurcation analysis of the DS equation with power law nonlinearity. Appl. Math. Inf. Sci. 9(4), 1719–1724 (2015)MathSciNetGoogle Scholar
- 43.Üreyen, A.E.: An estimate of the oscillation of harmonic reproducing kernels with applications. J. Math. Anal. Appl. 434(1), 538–553 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 44.Wang, G.-W., Xu, T.Z., Zedan, H.A., Abazari, R., Triki, H., Biswas, A.: Solitary waves, shock waves and other solutions to Nizhniki–Novikov–Veselov equation. Appl. Comput. Math. 14(3), 260–283 (2015)MathSciNetzbMATHGoogle Scholar
- 45.Wang, G., Kara, A.H., Fakhar, K., Vega-Guzman, Jose, Biswas, Anjan: Group analysis, exact solutions and conservation laws of a generalized fifth order KdV equation. Chaos Solitons Fractals 86, 8–15 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 46.Xie, D., Jiang, Yi: A nonlocal modified Poisson–Boltzmann equation and finite element solver for computing electrostatics of biomolecules. J. Comput. Phys. 322, 1–20 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 47.Xu, M.Q., Lin, Y.-Z.: Simplified reproducing kernel method for fractional differential equations with delay. Appl. Math. Lett. 52, 156–161 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 48.Zhou, Q., Zhong, Y., Mirzazadeh, M., Bhrawy, A.H., Zerrad, E., Biswas, Anjan: Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. Waves Random Complex Media 26(2), 204–210 (2016)MathSciNetCrossRefGoogle Scholar