Nonlinear Dynamics

, Volume 88, Issue 4, pp 2807–2816 | Cite as

Three-dimensional vector solitons and their stabilities in a Kerr medium with spatially inhomogeneous nonlinearity and transverse modulation

  • Rui-Pin Chen
  • Chao-Qing Dai
Original Paper


Analytical vector spatiotemporal soliton solutions are derived in a spatially inhomogeneous Kerr nonlinear medium with a transverse modulation by means of a generic transformation. As an example, spatiotemporal soliton clusters such as Gaussian soliton clusters and radially symmetric soliton clusters in the media with the parabolic transverse modulation and without transverse modulation are constructed. The stability of vector spatiotemporal soliton clusters is investigated analytically and numerically, and results indicate that in the spatially inhomogeneous Kerr nonlinear medium, besides the stable fundamental solitons, stable higher-order mode exists below the critical propagation constant.


Vector spatiotemporal soliton Transverse modulation Kerr medium Stable region 



This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY17F050011 and LZ17A040001), the National Natural Science Foundation of China (Grant Nos. 11375007 and 11574271). Dr. Chao-Qing Dai is also sponsored by the Foundation of New Century “151 Talent Engineering” of Zhejiang Province of China and Youth Top-notch Talent Development and Training Program of Zhejiang A&F University. Dr. Rui-Pin Chen is also sponsored by the Science Research Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant No. 14062078-Y.


  1. 1.
    Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005)CrossRefGoogle Scholar
  2. 2.
    Malomed, B., Torner, L., Wise, F., Mihalache, D.: On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics. J. Phys. B At. Mol. Opt. Phys. 49, 170502 (2016)CrossRefGoogle Scholar
  3. 3.
    Malomed, B.A.: Multidimensional solitons: well-established results and novel findings. Eur. Phys. J. Spec. Top. 225, 2507–2532 (2016)CrossRefGoogle Scholar
  4. 4.
    Mihalache, D.: Localized structures in nonlinear optical media: a selection of recent studies. Rom. Rep. Phys. 67, 1383–1400 (2015)Google Scholar
  5. 5.
    Mihalache, D.: Localized optical structures: an overview of recent theoretical and experimental developments. Proc. Rom. Acad. A 16, 62–69 (2015)MathSciNetGoogle Scholar
  6. 6.
    Mihalache, D.: Multidimensional localized structures in optics and Bose–Einstein condensates: a selection of recent studies. Rom. J. Phys. 59, 295–312 (2014)Google Scholar
  7. 7.
    Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221–1230 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, J.T., Zhang, X.T., Meng, M., Liu, Q.T., Wang, Y.Y., Dai, C.Q.: Control and management of the combined Peregrine soliton and Akhmediev breathers in PT-symmetric coupled waveguides. Nonlinear Dyn. 84, 473–479 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wang, Y.Y., Dai, C.Q., Zhou, G.Q., Fan, Y., Chen, L.: Rogue wave and combined breather with repeatedly excited behaviors in the dispersion/diffraction decreasing medium. Nonlinear Dyn. 87, 67–73 (2017)CrossRefGoogle Scholar
  10. 10.
    Li, J.T., Han, J.Z., Du, Y.D., Dai, C.Q.: Controllable behaviors of Peregrine soliton with two peaks in a birefringent fiber with higher-order effects. Nonlinear Dyn. 82, 1393–1398 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, Y.X., Jiang, Y.F., Xu, Z.X., Xu, F.Q.: Nonlinear tunnelling effect of combined Kuznetsov-Ma soliton in (3+1)-dimensional PT-symmetric inhomogeneous nonlinear couplers with gain and loss. Nonlinear Dyn. 82, 589–597 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dai, C.Q., Chen, R.P., Wang, Y.Y., Fan, Y.: Dynamics of light bullets in inhomogeneous cubic–quintic–septimal nonlinear media with PT-symmetric potentials. Nonlinear Dyn. 87, 1675–1683 (2017)CrossRefGoogle Scholar
  13. 13.
    Dai, C.Q., Fan, Y., Zhou, G.Q., Zheng, J., Cheng, L.: Vector spatiotemporal localized structures in (3 + 1)-dimensional strongly nonlocal nonlinear media. Nonlinear Dyn. 86, 999–1005 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhong, W.P., Belić, M.: Three-dimensional optical vortex and necklace solitons in highly nonlocal nonlinear media. Phys. Rev. A 79, 023804 (2009)CrossRefGoogle Scholar
  15. 15.
    Zhong, W.P., Yi, L.: Two-dimensional Laguerre-Gaussian soliton family in strongly nonlocal nonlinear media. Phys. Rev. A 75, 061801 (2007)CrossRefGoogle Scholar
  16. 16.
    Zhong, W.P., Belić, M., Xie, R.H., Chen, G.: Two-dimensional Whittaker solitons in nonlocal nonlinear media. Phys. Rev. A 78, 013826 (2008)CrossRefGoogle Scholar
  17. 17.
    Zhang, Y.Q., Liu, X., Belić, M.R., Zhong, W.P., Zhang, Y., Xiao, M.: Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015)CrossRefGoogle Scholar
  18. 18.
    Assanto, G., Stegeman, G.I.: Simple physics of quadratic spatial solitons. Opt. Express 10, 388–396 (2002)Google Scholar
  19. 19.
    Xu, Z., Smyth, N.F., Minzoni, A.A., Kivshar, YuS: Vector vortex solitons in nematic liquid crystals. Opt. Lett. 34, 1414–1416 (2009)CrossRefGoogle Scholar
  20. 20.
    Krolikowski, W., Ostrovskaya, E.A., Weilnau, C., Geisser, M., McCarthy, G., Kivshar, Y.S., Denz, C., Luther-Davies, B.: Observation of dipole-mode vector solitons. Phys. Rev. Lett. 85, 1424–1427 (2000)CrossRefGoogle Scholar
  21. 21.
    Zhong, W.P., Belić, M., Assanto, G., Malomed, B.A., Huang, T.W.: Self-trapping of scalar and vector dipole solitary waves in Kerr media. Phys. Rev. A 83, 043833 (2011)CrossRefGoogle Scholar
  22. 22.
    Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)zbMATHGoogle Scholar
  23. 23.
    Hung, N.V., Zin, P., Trippenbach, M., Malomed, B.A.: Two-dimensional solitons in media with stripe-shaped nonlinearity modulation. Phys. Rev. E 82, 046602 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Belmonte-Beitia, J., Perez-Garcia, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)CrossRefGoogle Scholar
  25. 25.
    Tian, Q., Wu, L., Zhang, J.F., Malomed, B.A., Mihalache, D., Liu, W.M.: Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity. Phys. Rev. E 83, 016602 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhong, W.P., Belić, M., Malomed, B.A.: Rogue waves in a two-component Manakov system with variable coefficients and an external potential. Phys. Rev. E 92, 053201 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–305 (2011)CrossRefGoogle Scholar
  28. 28.
    Raghavan, S., Agrawal, G.P.: Complex geometrical optics of inhomogeneous and nonlinear saturable media. Opt. Commun. 180, 377–382 (2000)Google Scholar
  29. 29.
    Wu, L., Li, L., Zhang, J.F., Mihalache, D., Malomed, B.A., Liu, W.M.: Exact solutions of the Gross–Pitaevskii equation for stable vortex modes in two-dimensional Bose–Einstein condensates. Phys. Rev. A 81, 061805(R) (2010)CrossRefGoogle Scholar
  30. 30.
    Belmonte-Beitia, J., Perez-Garcia, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)CrossRefGoogle Scholar
  31. 31.
    Whittaker, E.T., Watson, G.N.: A Course in Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  32. 32.
    Tian, Q., Wu, L., Zhang, Y.H., Zhang, J.F.: Vortex solitons in defocusing media with spatially inhomogeneous nonlinearity. Phys. Rev. E 85, 056603 (2012)CrossRefGoogle Scholar
  33. 33.
    Matuszewski, M., Trippenbach, M., Malomed, B.A., Infeld, E., Skorupski, A.A.: Two-dimensional dispersion-managed light bullets in Kerr media. Phys. Rev. E 70, 016603 (2004)CrossRefGoogle Scholar
  34. 34.
    Alexandrescu, A., Montesinos, G.D., Perez-Garcia, V.M.: Stabilization of high-order solutions of the cubic nonlinear Schrödinger equation. Phys. Rev. E 75, 046609 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Akhmediev, N., Soto-Crespo, J.M.: Generation of a train of three-dimensional optical solitons in a self-focusing medium. Phys. Rev. A 47, 1358–1364 (1993)CrossRefGoogle Scholar
  36. 36.
    Lushnikov, P.M., Saffman, M.: Collapse in a forced three-dimensional nonlinear Schrödinger equation. Phys. Rev. E 62, 5793–5796 (2000)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Tassin, P., Van der Sande, G., Veretenov, N., Kockaert, P., Veretennicoff, I., Tlidi, M.: Three-dimensional structures in nonlinear cavities containing left-handed materials. Opt. Express 14, 9338 (2006)CrossRefGoogle Scholar
  38. 38.
    Veretenov, N., Tlidi, M.: Dissipative light bullets in an optical parametric oscillator. Phys. Rev. A 80, 023822 (2009)CrossRefGoogle Scholar
  39. 39.
    Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N.: Bose–Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential. Phys. Rev. Lett. 86, 1402 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhysicsZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  2. 2.School of SciencesZhejiang A&F UniversityLin’anPeople’s Republic of China

Personalised recommendations