Advertisement

Nonlinear Dynamics

, Volume 88, Issue 4, pp 2747–2755 | Cite as

Finite-time stochastic synchronization of time-delay neural networks with noise disturbance

  • Xuerong ShiEmail author
  • Zuolei Wang
  • Lixin Han
Original Paper

Abstract

The finite-time stochastic synchronization of time-delay neural networks with noise disturbance is investigated according to finite-time stability theory of stochastic differential equation. Via constructing suitable Lyapunov function and controllers, finite-time stochastic synchronization is realized and sufficient conditions are derived. By analyzing the synchronization progress, factors affecting the convergence speed are given and feasible suggestions are proposed to improve the convergence rate. Finally, numerical simulations are given to verify the theoretical results.

Keywords

Finite-time stochastic synchronization Time-delay neural network Noise disturbance 

Notes

Acknowledgements

The authors give many thanks to the anonymous reviewers for their valuable comments. This work is supported by National Natural Science Foundation of China (Grant No. 11472238), the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2015211C267) and the Qing Lan Project of the Jiangsu Higher Education Institutions of China.

References

  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, X., Lu, J.: Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364(2), 123–128 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lin, W.: Adaptive chaos control and synchronization in only locally Lipschitz systems. Phys. Lett. A 372(18), 3195–3200 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ma, J., Zhang, A.H., Xia, Y.F., Zhang, L.P.: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215(9), 3318–3326 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35(6), 3080–3091 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, D., Zhang, R., Ma, X., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dyn. 69(1–2), 35–55 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tian, Y.W., Zhuang, J.L., Xu, R.Y.: Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control. Chaos Interdiscip. J. Nonlinear Sci. 18(3), 033133 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ji, D.H., Jeong, S.C., Park, J.H., Lee, S.M., Won, S.C.: Adaptive lag synchronization for uncertain complex dynamical network with delayed coupling. Appl. Math. Comput. 218(9), 4872–4880 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bao, H.B., Cao, J.D.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Li, H.L., Jiang, Y.L., Wang, Z.L.: Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic Chua systems via impulsive control. Nonlinear Dyn. 79(2), 919–925 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Shi, X., Lu, Q., Wang, H.: In-phase burst synchronization and rhythm dynamics of complex neuronal networks. Int. J. Bifurc. Chaos 22(5), 1250101 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Vinck, M., Oostenveld, R., van Wingerden, M., Battaglia, F., Pennartz, C.M.: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4), 1548–1565 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, Z.L., Wang, C., Shi, X.R., Ma, J., Tang, K.M., Cheng, H.S.: Realizing hybrid synchronization of time-delay hyperchaotic 4D systems via partial variables. Appl. Math. Comput. 245, 427–437 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Li, B., Xu, D.: Exponential \(p\)-stability of stochastic recurrent neural networks with mixed delays and Markovian switching. Neurocomputing 103, 239–246 (2013)CrossRefGoogle Scholar
  15. 15.
    Yuan, Y., Sun, F.: Delay-dependent stability criteria for time-varying delay neural networks in the delta domain. Neurocomputing 125, 17–21 (2014)CrossRefGoogle Scholar
  16. 16.
    Cheng, J., Zhu, H., Zhong, S., Li, G.: Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations. Appl. Math. Comput. 219(14), 7741–7753 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Song, X.L., Wang, C.N., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)CrossRefGoogle Scholar
  18. 18.
    Song, X.L., Wang, C.N., Ma, J., Ren, G.D.: Collapse of ordered spatial pattern in neuronal network. Phys. A 451, 95–112 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ma, J., Xu, Y., Ren, G.D.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84, 497–509 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Vincent, U.E., Guo, R.W.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375(24), 2322–2326 (2011)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, X., Fang, J.A., Mao, H., Dai, A.: Finite-time global synchronization for a class of Markovian jump complex networks with partially unknown transition rates under feedback control. Nonlinear Dyn. 79(1), 47–61 (2014)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shi, T.: Finite-time control of linear systems under time-varying sampling. Neurocomputing 151, 1327–1331 (2015)CrossRefGoogle Scholar
  23. 23.
    Velmurugan, G., Rakkiyappan, R., Cao, J.: Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw. 73, 36–46 (2016)CrossRefzbMATHGoogle Scholar
  24. 24.
    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li, B.: Finite-time synchronization for complex dynamical networks with hybrid coupling and time-varying delay. Nonlinear Dyn. 76(2), 1603–1610 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lin, X., Du, H., Li, S.: Finite-time boundedness and L 2-gain analysis for switched delay systems with norm-bounded disturbance. Appl. Math. Comput. 217(12), 5982–5993 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Cao, L., Ma, Y.: Linear generalized outer synchronization between two different complex dynamical networks with noise perturbation. Int. J. Nonlinear Sci. 3, 373–379 (2012)MathSciNetGoogle Scholar
  28. 28.
    Sun, Y., Li, W., Zhao, D.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos Interdiscip. J. Nonlinear Sci. 22(2), 023152 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Li, L., Jian, J.: Finite-time synchronization of chaotic complex networks with stochastic disturbance. Entropy 17(1), 39–51 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Jiang, N., Liu, X., Yu, W., Shen, J.: Finite-time stochastic synchronization of genetic regulatory networks. Neurocomputing 167, 314–321 (2015)CrossRefGoogle Scholar
  31. 31.
    Li, H.: Synchronization stability for discrete-time stochastic complex networks with probabilistic interval time-varying delays. J. Phys. A Math. Theor. 44(10), 697–708 (2011)CrossRefGoogle Scholar
  32. 32.
    Wang, Z., Liu, Y., Yu, L., Liu, X.: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Phys. Lett. A 356(4), 346–352 (2006)CrossRefzbMATHGoogle Scholar
  33. 33.
    Gan, Q., Liang, Y.: Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control. J. Franklin Inst. 349(6), 1955–1971 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wu, Z.G., Ju, H.P., Su, H., Chu, J.: Discontinuous Lyapunov functional approach to synchronization of time-delay neural networks using sampled-data. Nonlinear Dyn. 69(4), 2021–2030 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Mu, X., Chen, Y.: Synchronization of delayed discrete-time neural networks subject to saturated time-delay feedback. Neurocomputing 175(2), 293–299 (2015)Google Scholar
  36. 36.
    Yu, H., Wang, J., Du, J., Deng, B., Wei, X.: Local and global synchronization transitions induced by time delays in small-world neuronal networks with chemical synapses. Cogn. Neurodyn. 9(1), 93–101 (2015)CrossRefGoogle Scholar
  37. 37.
    Chen, W., Jiao, L.C.: Finite-time stability theorem of stochastic nonlinear systems. Automatica 46(12), 2105–2108 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wang, H., Han, Z., Xie, Q., Zhang, W.: Finite-time chaos synchronization of unified chaotic system with uncertain parameters. Commun. Nonlinear Sci. 14, 2239–2247 (2009)CrossRefGoogle Scholar
  39. 39.
    Huang, J.J., Li, C.D., Huang, T.W., He, X.: Finite-time lag synchronization of delayed neural networks. Neurocomputing 139, 145–149 (2014)CrossRefGoogle Scholar
  40. 40.
    Lu, H.: Chaotic attractors in delayed neural networks. Phys. Lett. A 298(2), 109–116 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Lu, J.Q., Wang, Z.D., Cao, J.D., Ho, D.W.C., Kurths, J.: Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int. J. Bifurc. Chaos 22(7), 137–139 (2012)CrossRefzbMATHGoogle Scholar
  42. 42.
    Lu, J., Cao, J.: Adaptive synchronization of uncertain dynamical networks with delayed coupling. Nonlinear Dyn. 53(1–2), 107–115 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsYancheng Teachers UniversityYanchengPeople’s Republic of China
  2. 2.Computer and Information Engineering CollegeHohai UniversityNanjingPeople’s Republic of China

Personalised recommendations