Advertisement

Nonlinear Dynamics

, Volume 88, Issue 3, pp 2303–2317 | Cite as

Chameleon: the most hidden chaotic flow

  • Mohammad Ali Jafari
  • Ezzedine Mliki
  • Akif Akgul
  • Viet-Thanh Pham
  • Sifeu Takougang Kingni
  • Xiong Wang
  • Sajad JafariEmail author
Original Paper

Abstract

Although chaotic systems with hidden attractors have been discovered recently, there is a few investigations about relationships among them. In this work, we introduce a unique simple chaotic flow which can belong to three famous categories of hidden attractors plus systems with self-excited attractors. This new system may help us in better understanding of chaotic attractors, especially hidden chaotic attractors.

Keywords

Chaotic flows Equilibrium Hidden attractors 

References

  1. 1.
    Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224(8), 1493–1506 (2015)CrossRefGoogle Scholar
  2. 2.
    Sprott, J.C.: Symmetric time-reversible flows with a strange attractor. Int. J. Bifurc. Chaos 25(05), 1550078 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Sprott, J.C.: Simplest chaotic flows with involutional symmetries. Int. J. Bifurc. Chaos 24(01), 1450009 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Tang, W.K., Zhong, G., Chen, G., Man, K.: Generation of n-scroll attractors via sine function. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(11), 1369–1372 (2001)CrossRefGoogle Scholar
  5. 5.
    Lü, J., Chen, G.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos 16(04), 775–858 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wang, L.: 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dyn. 56(4), 453–462 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76(4), 1951–1962 (2014)CrossRefGoogle Scholar
  8. 8.
    Muñoz-Pacheco, J., Tlelo-Cuautle, E., Toxqui-Toxqui, I., Sánchez-López, C., Trejo-Guerra, R.: Frequency limitations in generating multi-scroll chaotic attractors using CFOAs. Int. J. Electron. 101(11), 1559–1569 (2014)CrossRefGoogle Scholar
  9. 9.
    Zuo, T., Sun, K., Ai, X., Wang, H.: High-order grid multiscroll chaotic attractors generated by the second-generation current conveyor circuit. IEEE Trans. Circuits Syst. II Express Briefs 61(10), 818–822 (2014)CrossRefGoogle Scholar
  10. 10.
    Tlelo-Cuautle, E., Rangel-Magdaleno, J., Pano-Azucena, A., Obeso-Rodelo, P., Nunez-Perez, J.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(1), 66–80 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jafari, S., Pham, V.-T., Kapitaniak, T.: Multiscroll chaotic sea obtained from a simple 3d system without equilibrium. Int. J. Bifurc. Chaos 26(02), 1650031 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, F., Yao, C.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84, 2305–2315 (2016)Google Scholar
  13. 13.
    Li, F., Ma, J.: Pattern selection in network of coupled multi-scroll attractors. PLoS ONE 11(4), e0154282 (2016)CrossRefGoogle Scholar
  14. 14.
    Brummitt, C.D., Sprott, J.: A search for the simplest chaotic partial differential equation. Phys. Lett. A 373(31), 2717–2721 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gottlieb, H., Sprott, J.: Simplest driven conservative chaotic oscillator. Phys. Lett. A 291(6), 385–388 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sprott, J.C., Linz, S.J.: Algebraically simple chaotic flows. Int. J. Chaos Theory Appl. 5(2), 1–20 (2000)Google Scholar
  17. 17.
    Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68(8), 758–763 (2000)CrossRefGoogle Scholar
  18. 18.
    Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Leonov, G., Kuznetsov, N., Vagaitsev, V.: Localization of hidden Chua’s attractors. Phys. Lett. A 375(23), 2230–2233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Leonov, G., Kuznetsov, N., Vagaitsev, V.: Hidden attractor in smooth Chua systems. Phys. D Nonlinear Phenom. 241(18), 1482–1486 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23(01), 1330002 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Leonov, G., Kuznetsov, N., Kiseleva, M., Solovyeva, E., Zaretskiy, A.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77(1–2), 277–288 (2014)CrossRefGoogle Scholar
  23. 23.
    Leonov, G., Kuznetsov, N., Mokaev, T.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28(1), 166–174 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421–1458 (2015). doi: 10.1140/epjst/e2015-02470-3 CrossRefGoogle Scholar
  25. 25.
    Sharma, P., Shrimali, M., Prasad, A., Kuznetsov, N., Leonov, G.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1485–1491 (2015)CrossRefGoogle Scholar
  26. 26.
    Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N., Leonov, G.: Controlling dynamics of hidden attractors. Int. J. Bifurc. Chaos 25(04), 1550061 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R.: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377(9), 699–702 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jafari, S., Sprott, J.C., Pham, V.-T., Hashemi Golpayegani, S.M.R., Jafari, A.H.: A new cost function for parameter estimation of chaotic systems using return maps as fingerprints. Int. J. Bifurc. Chaos 24(10), 1450134 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pham, V.-T., Volos, C., Jafari, S., Wei, Z., Wang, X.: Constructing a novel no-equilibrium chaotic system. Int. J. Bifurc. Chaos 24(05), 1450073 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Tahir, F.R., Jafari, S., Pham, V.-T., Volos, C., Wang, X.: A novel no-equilibrium chaotic system with multiwing butterfly attractors. Int. J. Bifurc. Chaos 25(04), 1550056 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Pham, V.-T., Vaidyanathan, S., Volos, C., Jafari, S., Kingni, S.T.: A no-equilibrium hyperchaotic system with a cubic nonlinear term. Optik Int. J. Light Electron Opt. 127(6), 3259–3265 (2016)CrossRefGoogle Scholar
  33. 33.
    Pham, V.-T., Vaidyanathan, S., Volos, C., Jafari, S., Kuznetsov, N.V., Hoang, T.-M.: A novel memristive time-delay chaotic system without equilibrium points. Eur. Phys. J. Spec. Top. 225(1), 127–136 (2016)CrossRefGoogle Scholar
  34. 34.
    Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376(2), 102–108 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wang, X., Chen, G.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71(3), 429–436 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Li, C., Sprott, J.C., Thio, W., Zhu, H.: A new piecewise linear hyperchaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 61(12), 977–981 (2014)CrossRefGoogle Scholar
  37. 37.
    Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24(03), 1450034 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Molaie, M., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurc. Chaos 23(11), 1350188 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Kingni, S.T., Jafari, S., Simo, H., Woafo, P.: Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur. Phys. J. Plus 129(5), 1–16 (2014)CrossRefGoogle Scholar
  40. 40.
    Lao, S.-K., Shekofteh, Y., Jafari, S., Sprott, J.C.: Cost function based on gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor. Int. J. Bifurc. Chaos 24(01), 1450010 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pham, V.-T., Volos, C., Jafari, S., Wang, X.: Generating a novel hyperchaotic system out of equilibrium. Optoelectron. Adv. Mater. Rapid Commun. 8(5–6), 535–539 (2014)Google Scholar
  42. 42.
    Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Kingni, S.T., Pham, V.-T., Jafari, S., Kol, G.R., Woafo, P.: Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits Syst. Signal Process. 35(6), 1933–1948 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Pham, V.T., Jafari, S., Volos, C., Vaidyanathan, S., Kapitaniak, T.: A chaotic system with infinite equilibria located on a piecewise linear curve. Optik Int. J. Light Electron Opt. 127, 9111 (2016)CrossRefGoogle Scholar
  45. 45.
    Pham, V.-T., Jafari, S., Wang, X., Ma, J.: A chaotic system with different shapes of equilibria. Int. J. Bifurc. Chaos 26(04), 1650069 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Gotthans, T., Petržela, J.: New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81(3), 1143–1149 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Li, C., Sprott, J.C., Yuan, Z., Li, H.: Constructing chaotic systems with total amplitude control. Int. J. Bifurc. Chaos 25(10), 1530025 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Li, C., Sprott, J.: Chaotic flows with a single nonquadratic term. Phys. Lett. A 378(3), 178–183 (2014)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Li, C., Sprott, J., Thio, W.: Bistability in a hyperchaotic system with a line equilibrium. J. Exp. Theor. Phys. 118(3), 494–500 (2014)CrossRefGoogle Scholar
  50. 50.
    Jafari, S., Sprott, J., Molaie, M.: A simple chaotic flow with a plane of equilibria. Int. J. Bifurc. Chaos 26(06), 1650098 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Pham, V.-T., Jafari, S., Volos, C., Wang, X., Hashemi Golpayegani, S.M.R.: Is that really hidden? The presence of complex fixed-points in chaotic flows with no equilibria. Int. J. Bifurc. Chaos 24(11), 1450146 (2014)CrossRefzbMATHGoogle Scholar
  52. 52.
    Pham, V.-T., Volos, C., Jafari, S., Wang, X., Vaidyanathan, S.: Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron. Adv. Mater. Rapid Commun. 8(11–12), 1157–1163 (2014)Google Scholar
  53. 53.
    Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1469–1476 (2015)CrossRefGoogle Scholar
  54. 54.
    Pham, V.-T., Vaidyanathan, S., Volos, C., Jafari, S.: Hidden attractors in a chaotic system with an exponential nonlinear term. Eur. Phys. J. Spec. Top. 224(8), 1507–1517 (2015)CrossRefGoogle Scholar
  55. 55.
    Shahzad, M., Pham, V.-T., Ahmad, M.A., Jafari, S., Hadaeghi, F.: Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1637–1652 (2015)CrossRefGoogle Scholar
  56. 56.
    Sprott, J.C., Jafari, S., Pham, V.-T., Hosseini, Z.S.: A chaotic system with a single unstable node. Phys. Lett. A 379(36), 2030–2036 (2015). doi: 10.1016/j.physleta.2015.06.039 MathSciNetCrossRefGoogle Scholar
  57. 57.
    Pham, V.-T., Jafari, S., Vaidyanathan, S., Volos, C., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59(3), 358–363 (2016)CrossRefGoogle Scholar
  58. 58.
    Pham, V.T., Jafari, S., Volos, C., Giakoumis, A., Vaidyanathan, S., Kapitaniak, T.: A chaotic system with equilibria located on the rounded square loop and its circuit implementation. IEEE Trans. Circuits Syst. II Express Briefs 63, 878 (2016)CrossRefGoogle Scholar
  59. 59.
    Pham, V.T., Volos, C., Jafari, S., Vaidyanathan, S., Kapitaniak, T., Wang, X.: A chaotic system with different families of hidden attractors. Int. J. Bifurc. Chaos 26, 1650139 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Li, P., Zheng, T., Li, C., Wang, X., Hu, W.: A unique jerk system with hidden chaotic oscillation. Nonlinear Dyn. 86, 1–7 (2016)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Li, C., Sprott, J.: Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78(3), 2059–2064 (2014)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Jafari, S., Pham, V.-T., Golpayegani, S.M.R.H., Moghtadaei, M., Kingni, S.T.: The relationship between chaotic maps and some chaotic systems with hidden attractors. Int. J. Bifurc. Chaos 26, 1650211 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Jiang, H., Liu, Y., Wei, Z., Zhang, L.: Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn. 85, 2719–2727 (2016)Google Scholar
  64. 64.
    Li, C., Pehlivan, I., Sprott, J.C., Akgul, A.: A novel four-wing strange attractor born in bistability. IEICE Electron. Express 12(4), 20141116–20141116 (2015)CrossRefGoogle Scholar
  65. 65.
    Akgul, A., Calgan, H., Koyuncu, I., Pehlivan, I., Istanbullu, A.: Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dyn. 84(2), 481–495 (2016)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Akgul, A., Moroz, I., Pehlivan, I., Vaidyanathan, S.: A new four-scroll chaotic attractor and its engineering applications. Optik Int. J. Light Electron Opt. 127(13), 5491–5499 (2016)CrossRefGoogle Scholar
  67. 67.
    Akgul, A., Hussain, S., Pehlivan, I.: A new three-dimensional chaotic system, its dynamical analysis and electronic circuit applications. Optik Int. J. Light Electron Opt. 127(18), 7062–7071 (2016)CrossRefGoogle Scholar
  68. 68.
    Çavuşoğlu, Ü., Akgül, A., Kaçar, S., Pehlivan, İ., Zengin, A.: A novel chaos-based encryption algorithm over TCP data packet for secure communication. Secur. Commun. Netw. 9, 1285–1296 (2016)Google Scholar
  69. 69.
    Kaçar, S.: Analog circuit and microcontroller based RNG application of a new easy realizable 4D chaotic system. Optik Int. J. Light Electron Opt. 127(20), 9551–9561 (2016)CrossRefGoogle Scholar
  70. 70.
    Sun, Y., Chen, B., Lin, C., Wang, H., Zhou, S.: Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach. Inf. Sci. 369, 748–764 (2016)CrossRefGoogle Scholar
  71. 71.
    Mobayen, S.: Design of LMI-based global sliding mode controller for uncertain nonlinear systems with application to Genesio’s chaotic system. Complexity 21(1), 94–98 (2015)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Mobayen, S.: An LMI-based robust controller design using global nonlinear sliding surfaces and application to chaotic systems. Nonlinear Dyn. 79(2), 1075–1084 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Mobayen, S.: Finite-time stabilization of a class of chaotic systems with matched and unmatched uncertainties: an LMI approach. Complexity 21, 14–19 (2014)Google Scholar
  74. 74.
    Çiçek, S., Ferikoğlu, A., Pehlivan, İ.: A new 3D chaotic system: dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application. Optik Int. J. Light Electron Opt. 127(8), 4024–4030 (2016)CrossRefGoogle Scholar
  75. 75.
    Nejati, H., Beirami, A., Ali, W.H.: Discrete-time chaotic-map truly random number generators: design, implementation, and variability analysis of the zigzag map. Analog Integr. Circuits Signal Process. 73(1), 363–374 (2012)CrossRefGoogle Scholar
  76. 76.
    Beirami, A., Nejati, H., Ali, W.: Zigzag map: a variability-aware discrete-time chaotic-map truly random number generator. Electron. Lett. 48(24), 1537–1538 (2012)CrossRefGoogle Scholar
  77. 77.
    Zhao, L., Liao, X., Xiao, D., Xiang, T., Zhou, Q., Duan, S.: True random number generation from mobile telephone photo based on chaotic cryptography. Chaos Solitons Fractals 42(3), 1692–1699 (2009)CrossRefGoogle Scholar
  78. 78.
    Ergün, S., Özog, S.: Truly random number generators based on a non-autonomous chaotic oscillator. AEU Int. J. Electron. Commun. 61(4), 235–242 (2007)CrossRefGoogle Scholar
  79. 79.
    Li, Q., Liu, Q., Niu, J.: Chaotic oscillator with potentials in TRNG and ADC. In: 2012 35th International Conference on Telecommunications and Signal Processing (TSP) 2012Google Scholar
  80. 80.
    Stefański, K.: Modelling chaos and hyperchaos with 3-D maps. Chaos Solitons Fractals 9(1), 83–93 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Alçın, M., Pehlivan, İ., Koyuncu, İ.: Hardware design and implementation of a novel ANN-based chaotic generator in FPGA. Optik Int. J. Light Electron Opt. 127(13), 5500–5505 (2016)CrossRefGoogle Scholar
  82. 82.
    Cheng, C.-T., Wang, W.-C., Xu, D.-M., Chau, K.: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour. Manag. 22(7), 895–909 (2008)CrossRefGoogle Scholar
  83. 83.
    Jafari, S., Sprott, J.C.: Erratum to: “Simple chaotic flows with a line equilibrium”[Chaos, Solitons and Fractals 57 (2013) 79–84]. Chaos Solitons Fractals 77, 341–342 (2015)Google Scholar
  84. 84.
    Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurc. Chaos 23(11), 1350188 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1264–1272 (2012)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Huan, S., Li, Q., Yang, X.-S.: Horseshoes in a chaotic system with only one stable equilibrium. Int. J. Bifurc. Chaos 23(01), 1350002 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Jafari, S., Sprott, J.C., Pham, V.T., Golpayegani, S.M.R.H., Jafari, A.H.: A new cost function for parameter estimation of chaotic systems using return maps as fingerprints. Int. J. Bifurc. Chaos 24(10), 1450134 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Kingni, S., Jafari, S., Simo, H., Woafo, P.: Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur. Phys. J. Plus 129(5), 1–16 (2014)CrossRefGoogle Scholar
  89. 89.
    Lao, S.-K., Shekofteh, Y., Jafari, S., Sprott, J.C.: Cost function based on gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor. Int. J. Bifurc. Chaos 24(01), 1450010 (2014)Google Scholar
  90. 90.
    Pham, V.-T., Rahma, F., Frasca, M., Fortuna, L.: Dynamics and synchronization of a novel hyperchaotic system without equilibrium. Int. J. Bifurc. Chaos 24(06), 1450087 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  91. 91.
    Vaidyanathan, S.: Anti-synchronization of Wang-Chen chaotic systems via sliding mode control. In: 2012 IEEE International Conference on Computational Intelligence & Computing Research (ICCIC), pp. 1–4. IEEE (2012)Google Scholar
  92. 92.
    Wang, X., Chen, G.: Symmetrical multi-petal chaotic attractors in a 3D autonomous system with only one stable equilibrium. In: Proceedings of the 2011 Fourth International Workshop on Chaos-Fractals Theories and Applications 2011, pp. 82–85. IEEE Computer SocietyGoogle Scholar
  93. 93.
    Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13–23 (2014)MathSciNetCrossRefGoogle Scholar
  94. 94.
    Wei, Z., Zhang, W.: Hidden hyperchaotic attractors in a modified Lorenz–Stenflo system with only one stable equilibrium. Int. J. Bifurc. Chaos 24(10), 1450127 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefGoogle Scholar
  96. 96.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)CrossRefGoogle Scholar
  97. 97.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(07), 1465–1466 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  98. 98.
    Hoover, W.G.: Remark on “Some simple chaotic flows”. Phys. Rev. E 51(1), 759 (1995)CrossRefGoogle Scholar
  99. 99.
    Posch, H.A., Hoover, W.G., Vesely, F.J.: Canonical dynamics of the Nosé oscillator: stability, order, and chaos. Phys. Rev. A 33(6), 4253 (1986)MathSciNetCrossRefGoogle Scholar
  100. 100.
    Cafagna, D., Grassi, G.: Elegant chaos in fractional-order system without equilibria. Math. Probl. Eng. 2013, 380436 (2013)Google Scholar
  101. 101.
    Cafagna, D., Grassi, G.: Chaos in a new fractional-order system without equilibrium points. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2919–2927 (2014)MathSciNetCrossRefGoogle Scholar
  102. 102.
    Chaudhuri, U., Prasad, A.: Complicated basins and the phenomenon of amplitude death in coupled hidden attractors. Phys. Lett. A 378(9), 713–718 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    Kuznetsov, A., Kuznetsov, S., Mosekilde, E., Stankevich, N.: Co-existing hidden attractors in a radio-physical oscillator system. J. Phys. A Math. Theor. 48(12), 125101 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Biomedical Engineering DepartmentQazvin Islamic Azad UniversityQazvinIran
  2. 2.Department of Mathematics, College of ScienceUniversity of DammamDammamSaudi Arabia
  3. 3.Department of Electrical and Electronic Engineering, Faculty of TechnologySakarya UniversityAdapazarıTurkey
  4. 4.School of Electronics and TelecommunicationsHanoi University of Science and TechnologyHanoiVietnam
  5. 5.Department of Mechanical and Electrical EngineeringInstitute of Mines and Petroleum Industries, University of MarouaMarouaCameroon
  6. 6.Institute for Advanced StudyShenzhen UniversityShenzhenP.R. China
  7. 7.Biomedical Engineering DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations