Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control

Abstract

The problem of real combination synchronization between three complex-variable chaotic systems with unknown parameters is investigated by nonsingular terminal sliding mode control in a finite time. Based on the adaptive laws and finite-time stability theory, a nonsingular terminal sliding mode control is designed to ensure the real combination synchronization of three complex-variable chaotic systems in a given finite time. It is theoretically gained that the introduced sliding mode technique has finite-time convergence and stability in both arriving and sliding mode phases. Numerical simulation results are given to show the effectiveness and reliability of the finite-time real combination synchronization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

  2. 2.

    Zhang, Q., Lu, J., Lü, J., Tse, C.: Adaptive feedback synchronization of a general complex dynamical network with delayed nodes. IEEE Trans. Circuits Syst. II: Express. Briefs 55(2), 183–187 (2008)

  3. 3.

    Liu, Y., Sun, L., Lu, J., Liang, J.: Feedback Controller Design for the Synchronization of Boolean Control Networks. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2461012

  4. 4.

    Vincent, U.E.: Synchronization of identical and non-identical 4-D chaotic systems using active control. Chaos, Solitons Fractals 37(4), 1065–1075 (2008)

  5. 5.

    Yu, Y., Li, H.: Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear Ana. RWA 12(1), 388–393 (2011)

  6. 6.

    Dedieu, H., Ogorzalek, M.J.: Identifiability and identification of chaotic systems based on adaptive synchronization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 948–962 (1997)

  7. 7.

    Wu, E., Yang, X.: Adaptive synchronization of coupled nonidentical chaotic systems with complex variables and stochastic perturbations. Nonlinear Dyn. 84(1), 261–267 (2016)

  8. 8.

    Wang, C., He, Y., Ma, J., Huang, L.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20(1), 64–73 (2014)

  9. 9.

    Ma, J., Li, F., Huang, L., Jin, W.: Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3770–3783 (2014)

  10. 10.

    Yang, T., Chua, L.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 976–988 (1997)

  11. 11.

    Zhang, H., Ma, T., Huang, G., Wang, Z.: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man. Cybern. B 40(3), 831–844 (2010)

  12. 12.

    Sun, D.: Position synchronization of multiple motion axes with adaptive couplingcontrol. Automatica 39(6), 997–1005 (2003)

  13. 13.

    Grosu, I., Banerjee, R., Roy, P.K., Dana, S.K.: Design of coupling for synchronization of chaotic oscillators. Phys. Rev. E 80(3), 016212 (2009)

  14. 14.

    Ghosh, D., Grosu, I., Dana, S.K.: Design of coupling for synchronization in time-delayed systems. Chaos 22(3), 033111 (2012)

  15. 15.

    Feki, M.: Sliding mode control and synchronization of chaotic systems with parametric uncertainties. Chaos Solitons Fractals 41(3), 1390–1400 (2009)

  16. 16.

    Konishi, K., Hirai, M., Kokame, H.: Sliding mode control for a class of chaotic systems. Phys. Lett. A 245(6), 511–517 (1998)

  17. 17.

    Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model 35(6), 3080–3091 (2011)

  18. 18.

    Peng, Y.F.: Robust intelligent sliding model control using recurrent cerebellar model articulation controller for uncertain nonlinear chaotic systems. Chaos Solitons Fractals 39(1), 150–167 (2009)

  19. 19.

    Jang, M.J., Chen, C.L., Chen, C.K.: Sliding mode control of hyperchaos in Rössler systems. Chaos Solitons Fractals 14(9), 1465–1476 (2002)

  20. 20.

    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

  21. 21.

    Yu, X.H., Man, Z.H.: Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans. Theory Appl. Circuits Syst. I Fundam. 49(2), 261–264 (2002)

  22. 22.

    Wang, H., Han, Z., Xie, Q., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2728–2733 (2009)

  23. 23.

    Yang, X., Cao, J.: Finite-time stochastic synchronization of complex networks. Appl. Math. Model 34(11), 3631–3641 (2010)

  24. 24.

    Yang, X., Lu, J.: Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans. Autom. Control 61(8), 2256–2261 (2016)

  25. 25.

    Xia, Z., Wang, X., Zhang, L., Zhan, Q., Sun, X., Ren, K.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Sec. 11(11), 2594–2608 (2016)

  26. 26.

    Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)

  27. 27.

    Luo, C., Wang, X.: Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identification. J. Frankl. Inst. 350(9), 2646–2663 (2011)

  28. 28.

    Wang, X., Zhao, H., Lin, X.: Module-phase synchronization in hyperchaotic complex Lorenz system after modified complex projection. Appl. Math. Comput. 232, 91–96 (2014)

  29. 29.

    Luo, C., Wang, X.: Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn. 71(1–2), 241–257 (2013)

  30. 30.

    Sun, J., Shen, Y., Zhang, X.: Modified projective and modified function projective synchronization of a class of real nonlinear systems and a class of complex nonlinear systems. Nonlinear Dyn. 78(3), 1755–1764 (2014)

  31. 31.

    Sun, J., Shen, Y., Zhang, G., Xu, C., Cui, G.: Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dyn. 73(3), 1211–1222 (2013)

  32. 32.

    Sun, J., Shen, Y., Wang, X., Chen, J.: Finite-time combination–combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn. 76(1), 383–397 (2014)

  33. 33.

    Sun, J., Wang, Y., Wang, Y., Shen, Y.: Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control. Nonlinear Dyn. 85(2), 1105–1117 (2016)

  34. 34.

    Sun, J., Cui, G., Wang, Y., Shen, Y.: Combination complex synchronization of three chaotic complex systems. Nonlinear Dyn. 79(2), 953–965 (2015)

  35. 35.

    Sun, J., Shen, Y., Cui, G.: Compound synchronization of four chaotic complex systems. Adv. Math. Phys. (2015). doi:10.1155/2015/921515

  36. 36.

    Yang, X., Ho, D.W.C.: Synchronization of delayed memristive neural networks: robust analysis approach. IEEE Trans. Cybern. (2015). doi:10.1109/TCYB.2015.2505903

  37. 37.

    Yang, X.: Can neural networks with arbitrary delays be finite-timely synchronized? Neurocomputing 143(3), 275–281 (2014)

  38. 38.

    Yang, X., Song, Q., Liang, J., He, B.: Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations. J. Frankl. Inst. 352(10), 4382–4406 (2015)

  39. 39.

    Yang, X., Ho, D.W.C., Lu, J., Song, Q.: Finite-time cluster synchronization of TCS fuzzy complex networks with discontinuous subsystems and random coupling delays. IEEE Trans. Fuzzy Syst. 23(6), 2302–2316 (2015)

  40. 40.

    Shi, L., Yang, X., Li, Y., Feng, Z.: Finite-time synchronization of nonidentical chaotic systems with multiple time-varying delays and bounded perturbations. Nonlinear Dyn. 83(1–2), 75–87 (2016)

  41. 41.

    Li, Y., Yang, X., Shi, L.: Finite-time synchronization for competitive neural networks with mixed delays and non-identical perturbations. Neurocomputing 185, 242–253 (2016)

  42. 42.

    Hua, H., Liu, Y., Lu, J., Zhu, J.: A new impulsive synchronization criterion for T–S fuzzy model and its applications. Appl. Math. Model. 37(20), 8826–8835 (2013)

  43. 43.

    Zhang, W., Liu, Y.: Observer-based distributed consensus for general nonlinear multi-agent systems with interval control inputs. Int. J. Control 89(1), 84–98 (2016)

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant Nos. 61472371, 61472372, 61572446, 61602424 and 61603348), Science and Technology Innovation Talents Henan Province (Grant No. 174200510012) China Postdoctoral Science Foundation funded Project (Grant No. 2015M570641 and 2016T90687), Basic and Frontier Technology Research Program of Henan Province (Grant No. 16230041 0220), Key Program of Higher Education of China Henan Province (Grant No. 17A120005) and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).

Author information

Correspondence to Yanfeng Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wu, Y., Cui, G. et al. Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn 88, 1677–1690 (2017). https://doi.org/10.1007/s11071-017-3338-z

Download citation

Keywords

  • Finite time
  • Real combination synchronization
  • Complex-variable chaotic system
  • Sliding mode control
  • Unknown parameter