Nonlinear Dynamics

, Volume 88, Issue 2, pp 871–882 | Cite as

Fractal dimension and Wada measure revisited: no straightforward relationships in NDDS

  • Pranas Ziaukas
  • Minvydas Ragulskis
Original Paper


An extended Newton’s discrete dynamical system with a complex control parameter is investigated in this paper. A novel computational algorithm is introduced for the evaluation of Wada measure. A nontrivial relationship between the fractal dimension and the Wada measure is revealed in NDDS. It is demonstrated that the reduction of the fractal dimension of basin boundaries of coexisting attractors does not automatically imply a lower Wada measure of these boundaries. Computational experiments are used to illustrate what impact the complexity of the relationship between fractal dimension and Wada measure does have in practical applications.


Chaotic attractor Fractal dimension Wada property 



Financial support from the Lithuanian Science Council under project no. MIP078 / 15 is acknowledged.


  1. 1.
    Aguirre, J., Sanjuán, M.A.: Unpredictable behavior in the Duffing oscillator: Wada basins. Phys. D: Nonlinear Phenom. 171(1–2), 41–51 (2002). doi: 10.1016/S0167-2789(02)00565-1 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amrein, M., Wihler, T.P.: An adaptive Newton-method based on a dynamical systems approach. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2958–2973 (2014). doi: 10.1016/j.cnsns.2014.02.010 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, Hoboken (1978)zbMATHGoogle Scholar
  4. 4.
    Barnsley, M.F., Rising, H.: Fractals Everywhere. Morgan Kaufmann, Burlington (2000)Google Scholar
  5. 5.
    Breban, R., Nusse, H.E.: On the creation of Wada basins in interval maps through fixed point tangent bifurcation. Phys. D: Nonlinear Phenom. 207(1–2), 52–63 (2005). doi: 10.1016/j.physd.2005.05.012 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cartwright, J.H.: Newton maps: fractals from Newton’s method for the circle map. Comput. Gr. 23(4), 607–612 (1999). doi: 10.1016/S0097-8493(99)00078-3 CrossRefGoogle Scholar
  7. 7.
    Cayley, A.: Application of the Newton–Fourier method to an imaginary root of an equation. Q. J. Pure Appl. Math 16, 179–185 (1879)zbMATHGoogle Scholar
  8. 8.
    Chandra Sekhar, D., Ganguli, R.: Fractal boundaries of basin of attraction of Newton–Raphson method in helicopter trim. Comput. Math. Appl. 60(10), 2834–2858 (2010). doi: 10.1016/j.camwa.2010.09.040 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Daza, A., Wagemakers, A., Sanjuán, M.A.F., Yorke, J.A.: Testing for Basins of Wada. Sci. Rep. 5, 16,579 (2015). doi: 10.1038/srep16579 CrossRefGoogle Scholar
  10. 10.
    Drexler, M., Sobey, I., Bracher, C.: On the fractal characteristics of a stabilised Newton method. Oxford University Computing Laboratory, Oxford (1995)Google Scholar
  11. 11.
    Drexler, M., Sobey, I., Bracher, C.: Fractal Characteristics of Newton’s Method on Polynomials. Oxford University Computer Laboratory, Oxford (1996)Google Scholar
  12. 12.
    Epureanu, B.I., Greenside, H.S.: Fractal basins of attraction associated with a damped Newton’s method. SIAM Rev. 40(1), 102–109 (1998). doi: 10.1137/S0036144596310033 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fedaravičius, A.P., Cao, M., Ragulskis, M.: Control of a dendritic neuron driven by a phase-independent stimulation. Chaos Solitons Fractals 85, 77–83 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Frame, M., Neger, N.: Newton’s Method and the Wada property: a Graphical Approach. Coll. Math. J. 38(3), 192–204 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gilbert, W.J.: Generalizations of Newton’s method. Fractals 09(03), 251–262 (2001). doi: 10.1142/S0218348X01000737 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Holt, R., Schwartz, I.: Newton’s method as a dynamical system: global convergence and predictability. Phys. Lett. A 105(7), 327–333 (1984). doi: 10.1016/0375-9601(84)90273-1 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Huber, P.J.: Robust Statistics. Springer, Berlin (2011)CrossRefGoogle Scholar
  18. 18.
    Straffin Jr., P.: Newton’s method and fractal patterns. Applications of Calculus 3, 68–84 (1991)Google Scholar
  19. 19.
    Kennedy, J., Yorke, J.A.: Basins of Wada. Phys. D 51(1–3), 213–225 (1991). doi: 10.1016/0167-2789(91)90234-Z MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Krause, E.F.: Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Courier Corporation, Mineola (1975)Google Scholar
  21. 21.
    Landauskas, M., Ragulskis, M.: Clocking convergence to a stable limit cycle of a periodically driven nonlinear pendulum. Chaos: Interdisc. J. Nonlinear Sci. 22(3), 033,138 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nusse, H.E., Yorke, J.A.: Wada basin boundaries and basin cells. Phys. D 90(3), 242–261 (1996). doi: 10.1016/0167-2789(95)00249-9 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Poon, L., Campos, J., Edward, O., Grebogi, C.: Wada basin boundaries in chaotic scattering. Int. J. Bifurc. Chaos 06(02), 251–265 (1996). doi: 10.1142/S0218127496000035 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Portela, S., Iber, E.: Fractal and Wada exit basin boundaries in tokamaks. Int. J. Bifurc. Chaos 17(11), 4067–4079 (2007). doi: 10.1142/S021812740701986X MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sarkar, N., Chaudhuri, B.: An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. 24(1), 115–120 (1994)CrossRefGoogle Scholar
  27. 27.
    Schröder, E.: Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2(2), 317–365 (1870). doi: 10.1007/BF01444024 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sobey, I.J.: Characteristics of Newton’s method on polynomials. Oxford Computer Lab, Oxford (1996)Google Scholar
  29. 29.
    Susanto, H., Karjanto, N.: Newton’s method’s basins of attraction revisited. Appl. Math. Comput. 215(3), 1084–1090 (2009). doi: 10.1016/j.amc.2009.06.041 MathSciNetzbMATHGoogle Scholar
  30. 30.
    Sweet, D., Ott, E., Yorke, J.A.: Topology in chaotic scattering. Nature 399(6734), 315–316 (1999). doi: 10.1038/20573 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Vandermeer, J.: Wada basins and qualitative unpredictability in ecological models: a graphical interpretation. Ecol. Model. 176(1–2), 65–74 (2004). doi: 10.1016/j.ecolmodel.2003.10.028 CrossRefGoogle Scholar
  32. 32.
    Vandermeer, J., Stone, L., Blasius, B.: Categories of chaos and fractal basin boundaries in forced predator–prey models. Chaos Solitons Fractals 12(2), 265–276 (2001). doi: 10.1016/S0960-0779(00)00111-9
  33. 33.
    Walsh, J.: The dynamics of Newton’s method for cubic polynomials. Coll. Math. J. 26, 22–28 (1995)CrossRefzbMATHGoogle Scholar
  34. 34.
    Wang, X., Yu, X.: Julia sets for the standard Newton’s method, Halley’s method, and Schröder’s method. Appl. Math. Comput. 189(2), 1186–1195 (2007). doi: 10.1016/j.amc.2006.12.002 MathSciNetzbMATHGoogle Scholar
  35. 35.
    Zhang, Y., Luo, G.: Unpredictability of the Wada property in the parameter plane. Phys. Lett. A 376(45), 3060–3066 (2012). doi: 10.1016/j.physleta.2012.08.015 CrossRefGoogle Scholar
  36. 36.
    Zhang, Y., Luo, G.: Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map. Phys. Lett. A 377(18), 1274–1281 (2013). doi: 10.1016/j.physleta.2013.03.027 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mathematical ModelingKaunas University of TechnologyKaunasLithuania

Personalised recommendations