Advertisement

Nonlinear Dynamics

, Volume 88, Issue 1, pp 791–805 | Cite as

Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system

  • Marius-F. Danca
  • Nikolay Kuznetsov
  • Guanrong Chen
Original Paper

Abstract

This paper presents some numerical evidence of unusual dynamics and hidden chaotic attractors of the Rabinovich–Fabrikant system, with some insightful descriptions and discussions. From a generalized Hamiltonian energy perspective, the attractors could be analyzed in more details.

Keywords

Rabinovich–Fabrikant system Hidden chaotic attractor Self-excited attractor Hamiltonian energy 

Notes

Acknowledgements

We thank Michal Fec̆kan for his help in Hamiltonian energy analysis. NK is supported by the Russian Science Foundation 14-21-00041, GC by the Hong Kong Research Grants Council under the GRF Grant CityU 11208515.

References

  1. 1.
    Rabinovich, M.I., Fabrikant, A.L.: Stochastic self-modulation of waves in nonequilibrium media. J.E.T.P. (Sov.) 77, 617–629 (1979)Google Scholar
  2. 2.
    Danca, M.-F., Feckan, M., Kuznetsov, N., Chen, G.: Looking more closely to the Rabinovich-Fabrikant system. Int. J. Bifurc. Chaos 26, 1650038 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Danca, M.-F.: Hidden transient chaotic attractors of Rabinovich-Fabrikant system. Nonlinear Dyn. 86, 1263–1270 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Liu, Y., Yang, Q., Pang, G.: A hyperchaotic system from the Rabinovich system. J. Comput. Appl. Math. 234, 101–113 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zhang, C.-X., Yu, S.-M., Zhang, Y.: Design and realization of multi-wing chaotic attractors via switching control. Int. J. Mod. Phys. B 25, 2183 (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Motsa, S.S., Dlamini, P.G., Khumalo, M.: Solving hyperchaotic systems using the spectral relaxation method. Abstr. Appl. Anal. 2012, 203461 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Agrawal, S.K., Srivastava, M., Das, S.: Synchronization between fractional-order Rabinovich-Fabrikant and Lotka-Volterra systems. Nonlinear Dyn. 69, 3361–3372 (2014)Google Scholar
  8. 8.
    Chairez, I.: Multiple DNN identifier for uncertain nonlinear systems based on Takagi-Sugeno inference. Fuzzy Set. Syst. 237, 118–135 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Umoh, E.A. In: Achumba, I.E; Diala, U.H.; Atimati (eds.) IEEE International Conference on Emerging and Sustainable Technologies for Power and ICT in a Developing Society (NIGERCON) Owerri, Nov 14–16, pp. 217-222 (2013)Google Scholar
  10. 10.
    Serrano-Guerrero, H., Cruz-Hernández, C., López-Gutiérrez, R.M., Cardoza-Avendaño, L., Chávez-Pérez, R.A.: Chaotic synchronization in nearest-neighbor coupled networks of 3D CNNs. J. Appl. Res. Technol. 11, 26–41 (2013)CrossRefGoogle Scholar
  11. 11.
    Srivastava, M., Agrawal, S.K., Vishal, K., Das, S.: Chaos control of fractional order Rabinovich–Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich-Fabrikant system. Appl. Math. Model. 38, 3361 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Danca, M.-F.: A multistep algorithm for ODEs, dynamics of continuous. Discrete Impuls. Syst. B 13, 803–821 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sarra, S.A., Meador, C.: On the numerical solution of chaotic dynamical systems using extend precision floating point arithmetic and very high order numerical methods. Nonlinear Anal. Model. Control 16, 340–352 (2011)MathSciNetGoogle Scholar
  14. 14.
    Kuznetsov, N.V., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V.: Nonlinear analysis of classical phase-locked loops in signal’s phase space. IFAC Proc. Vol. 19, 8253 (2014). (IFAC-PapersOnline)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kuznetsov, N.V.: Hidden attractors in fundamental problems and engineering models. A short survey, AETA 2015: recent advances in electrical engineering and related sciences, Lecture Notes in Electrical Engineering, vol. 371, pp. 13–25 (2016)Google Scholar
  16. 16.
    Bianchi, G., Kuznetsov, N.V., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V.: 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Limitations of PLL simulation: hidden oscillations in MATLAB and SPICE, pp. 79–84 (2015) arXiv:1506.02484, http://www.mathworks.com/matlabcentral/fileexchange/52419-hidden-oscillations-in-pll
  17. 17.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D: Nonlinear Phenom. 241, 1482–1486 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems: from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015)CrossRefGoogle Scholar
  21. 21.
    Andronov, A.A., Vitt, E.A., Khaikin, S.E.: Theory of Oscillators (in Russian). ONTI NKTP SSSR (1937) (English transl. 1966, Pergamon Press, New York)Google Scholar
  22. 22.
    Pisarchik, A., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wei, Z., Pham, V.T., Kapitaniak, T., Wang, Z.: Bifurcation analysis and circuit realization for multiple-delayed Wang-Chen system with hidden chaotic attractors. Nonlinear Dyn. 85(3), 16351650 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Akgul, A., Calgan, H., Koyuncu, I., Pehlivan, I., Istanbullu, A.: Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dyn. 84(2), 481–495 (2016)Google Scholar
  26. 26.
    Chaudhuria, U., Prasad, A.: Complicated basins and the phenomenon of amplitude death in coupled hidden attractors. Phys. Lett. A 378(9), 713–718 (2014)Google Scholar
  27. 27.
    Akgul, A., Pehlivan, I.: A new three-dimensional chaotic system without equilibrium points, its dynamical analyses and electronic circuit application. Tech. Gaz. 23(1), 209–214 (2016)Google Scholar
  28. 28.
    Sarasola, C., Torrealdea, F.J., dAnjou, A., Moujahid, A., Graña, M.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. E 69, 011606 (2004)CrossRefGoogle Scholar
  29. 29.
    Li, F., Yao, C.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84, 2305–2315 (2016)Google Scholar
  30. 30.
    Torrealdea, F.J., d’Anjou, A., Graña, M.: Energy aspects of the synchronization of model neurons. Phys. Rev. 74, 011905 (2006)Google Scholar
  31. 31.
    Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24, 128710 (2015)CrossRefGoogle Scholar
  32. 32.
    Panofsky, W.K.H., Phillips, M.: Classical Electricity and Magnetism. Addison-Wesley Series, Reading, MA (1962)zbMATHGoogle Scholar
  33. 33.
    Donald, K.H.: Helmholtzs theorem revisited. Am. J. Phys. 54, 552 (1986)CrossRefGoogle Scholar
  34. 34.
    Rohrlich, F.: The validity of the Helmholtz theorem. Am. J. Phys. 72, 412–413 (2004)CrossRefGoogle Scholar
  35. 35.
    Benoît, E.: Bifurcation delay—the case of the sequence: stable focus—unstable focus—unstable node. Discr. Cont. Dyn. Sys. Ser. S. arXiv:0901.2883 [math.DS]
  36. 36.
    Baer, S.M., Erneux, T., Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49, 55–71 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceAvram Iancu University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Romanian Institute of Science and TechnologyCluj-NapocaRomania
  3. 3.Department of Applied CyberneticsSaint-Petersburg State UniversitySaint-PetersburgRussia
  4. 4.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland
  5. 5.Department of Electronic EngineeringCity University of Hong KongHong KongChina

Personalised recommendations