Nonlinear Dynamics

, Volume 87, Issue 4, pp 2563–2575 | Cite as

Dynamics of fault motion in a stochastic spring-slider model with varying neighboring interactions and time-delayed coupling

  • Srđan Kostić
  • Nebojša Vasović
  • Igor Franović
  • Kristina Todorović
  • Vladimir Klinshov
  • Vladimir Nekorkin
Original Paper

Abstract

We examine dynamics of a fault motion by analyzing behavior of a spring-slider model composed of 100 blocks where each block is coupled to a varying number of 2K neighboring units (1 \(\le \) 2K \(\le \) N, \(N=100\)). Dynamics of such model is studied under the effect of delayed interaction, variable coupling strength and random seismic noise. The qualitative analysis of stability and bifurcations is carried out by deriving an approximate deterministic mean-field model, which is demonstrated to accurately capture the dynamics of the original stochastic system. The primary effect concerns the direct supercritical Andronov–Hopf bifurcation, which underlies transition from equilibrium state to periodic oscillations under the variation of coupling delay. Nevertheless, the impact of delayed interactions is shown to depend on the coupling strength and the friction force. In particular, for loosely coupled blocks and low values of friction, observed system does not exhibit any bifurcation, regardless of the assumed noise amplitude in the expected range of values. It is also suggested that a group of blocks with the largest displacements, which exhibit nearly regular periodic oscillations analogous to coseismic motion for system parameters just above the bifurcation curve, can be treated as a representative of an earthquake hypocenter. In this case, the distribution of event magnitudes, defined as a natural logarithm of a sum of squared displacements, is found to correspond well to periodic (characteristic) earthquake model.

Keywords

Mean-field approximation Spring-block model Seismic noise Time delay Coupling strength Periodic earthquake model 

References

  1. 1.
    Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967)Google Scholar
  2. 2.
    Dieterich, J.H.: Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979)CrossRefGoogle Scholar
  3. 3.
    Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. 88(B12), 10359–10370 (1983)CrossRefGoogle Scholar
  4. 4.
    Carlson, J., Langer, J.: Mechanical model of an earthquake fault. Phys. Rev. A 40, 6470–6484 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kawamura, H., Hatano, T., Kato, N., Biswas, S., Chakrabarti, B.K.: Statistical physics of fracture, friction, and earthquakes. Rev. Mod. Phys. 84(2), 839–884 (2012)CrossRefGoogle Scholar
  6. 6.
    De Sousa Vieira, M.: Chaos and synchronized chaos in an earthquake model. Phys. Rev. Lett. 82, 201–204 (1999)CrossRefGoogle Scholar
  7. 7.
    Erickson, B., Birnir, B., Lavallee, D.: A model for aperiodicity in earthquakes. Nonlinear Process. Geophys. 15, 1–12 (2008)CrossRefGoogle Scholar
  8. 8.
    Kostić, S., Franović, I., Todorović, K., Vasović, N.: Friction memory effect in complex dynamics of earthquake model. Nonlinear Dyn. 73(3), 1933–1943 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kostić, S., Franović, I., Perc, M., Vasović, N., Todorović, K.: Triggered dynamics in a model of different fault creep regimes. Sci. Rep. 4, 5401 (2014)Google Scholar
  10. 10.
    Kostić, S., Vasović, N., Franović, I., Todorović, K.: Dynamics of simple earthquake model with time delay and variation of friction strength. Nonlinear Process. Geophys. 20, 857–865 (2013)CrossRefGoogle Scholar
  11. 11.
    Erickson, B.A., Birnir, B., Lavallée, D.: Periodicity, chaos and localization in a Burridge–Knopoff model of an earthquake with rate-and-state friction. Geophys. J. Int. 187, 178–198 (2011)CrossRefGoogle Scholar
  12. 12.
    Goudarzi, A., Riahi, M.A.: Seismic coherent and random noise attenuation using the undecimated discrete wavelet transform method with WDGA technique. J. Geophys. Eng. 9, 619–631 (2012)CrossRefGoogle Scholar
  13. 13.
    Chiu, S.K.: Coherent and random noise attenuation via multichannel singular spectrum analysis in the randomized domain. Geophys. Prospect. 61, 1–9 (2013)CrossRefGoogle Scholar
  14. 14.
    Pomeau, Y., Le Berre, M.: Critical speed-up versus critical slow-down: a new kind of relaxation oscillation with application to stick-slip phenomena. arXiv:1107.3331v1 (2011)
  15. 15.
    Mori, T., Kawamura, H.: Simulation study of spatiotemporal correlations of earthquakes as a stick-slip frictional instability. Phys. Rev. Lett. 94, 058501-1-4 (2005)Google Scholar
  16. 16.
    Xia, J., Gould, H., Klein, W., Rundle, J.B.: Near-mean-field behavior in the generalized Burridge-Knopoff earthquake model with variable-range stress transfer. Phys. Rev. E 77, 031132-1-11 (2008)Google Scholar
  17. 17.
    Mori, T., Kawamura, H.: Simulation study of earthquakes based on the two-dimensional Burridge–Knopoff model with long–range interactions. Phys. Rev. E 77, 051123-1-16 (2008)Google Scholar
  18. 18.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Uyeda, S., Kamogawa, M.: Natural-time analysis of critical phenomena: the case of seismicity. Europhys. Lett. 92, 29002 (2010)CrossRefGoogle Scholar
  19. 19.
    Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321 (2004)CrossRefGoogle Scholar
  20. 20.
    Zaks, M.A., Sailer, X., Schimansky-Geier, L., Neiman, A.B.: Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. Chaos 15, 026117 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Klinshov, V., Franović, I.: Mean-field dynamics of a random neural network with noise. Phys. Rev. EGoogle Scholar
  22. 22.
    Telford, W.M., Geldart, L.P., Sheriff, R.E.: Applied Geophysics, 2nd edn. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  23. 23.
    Ryabov, V.B., Correig, A.M., Urquizu, M., Zaikin, A.A.: Microseism oscillations: from deterministic to noise-driven models. Chaos Solitons Fract. 16, 195–210 (2003)CrossRefMATHGoogle Scholar
  24. 24.
    Sone, H., Shimamoto, T.: Frictional resistance of faults during accelerating and decelerating earthquake slip. Nat. Geosci. 2, 705–708 (2009)CrossRefGoogle Scholar
  25. 25.
    Lapusta, N.: The roller coaster of fault friction. Nat. Geosci. 2, 676–677 (2009)CrossRefGoogle Scholar
  26. 26.
    Burić, N., Ranković, D., Todorović, K., Vasović, N.: Mean field approximation for noisy delay coupled excitable neurons. Phys. A 389, 3956–3964 (2010)CrossRefGoogle Scholar
  27. 27.
    Vasović, N., Kostić, S., Franović, I., Todorović, K.: Earthquake nucleation in a stochastic fault model of globally coupled units with interaction delays. Commun. Nonlinear Sci. 38, 117–129 (2016)Google Scholar
  28. 28.
    Shimazaki, K., Nakata, T.: Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett. 7, 279–282 (1980)CrossRefGoogle Scholar
  29. 29.
    Kanamori, H.: Earthquake prediction: an overview. Int. Geophys. 81(part B), 1205–1216 (2003)CrossRefGoogle Scholar
  30. 30.
    Parsons, T., Console, R., Falcone, G., Muru, M., Yamashina, K.: Comparison of characteristic and Gutenberg–Richter models for time-dependent \(M\ge 7.9\) earthquake probability in the Nankai–Tokai subduction zone, Japan. Geophys. J. Int. 190(3), 1673–1688 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Srđan Kostić
    • 1
  • Nebojša Vasović
    • 2
  • Igor Franović
    • 3
  • Kristina Todorović
    • 4
  • Vladimir Klinshov
    • 5
  • Vladimir Nekorkin
    • 5
  1. 1.Department for Scientific Research and InformaticsInstitute for Development of Water Resources “Jaroslav Černi”BelgradeSerbia
  2. 2.Department of Applied Mathematics and Informatics, Faculty of Mining and GeologyUniversity of BelgradeBelgradeSerbia
  3. 3.Scientific Computing Lab, Institute of Physics BelgradeUniversity of BelgradeBelgradeSerbia
  4. 4.Department of Mathematics and Physics, Faculty of PharmacyUniversity of BelgradeBelgradeSerbia
  5. 5.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations