Nonlinear Dynamics

, Volume 87, Issue 4, pp 2367–2383 | Cite as

Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints

  • Zhonghua Wu
  • Jingchao Lu
  • Qing Zhou
  • Jingping Shi
Original Paper


In this paper, a barrier Lyapunov function-based adaptive neural dynamic surface control approach is proposed for morphing aircraft subject to unknown parameters and input–output constraints. Based on the functional decomposition, the longitudinal dynamics can be divided into altitude and velocity subsystems. Minimal learning parameter (MLP) technique-based neural networks are used to estimate the model uncertainties; thus, the amount of online-updated parameters is largely reduced. To overcome the problem of ‘explosion of complexity’ in the back-stepping method, the first-order sliding mode differentiator (FOSD) is introduced to compute the derivative of virtual control laws. Combining MLP and FOSD technique, a composite adaptive neural control scheme is proposed by utilizing an auxiliary system to deal with the input saturation and a barrier Lyapunov function to counteract the output constraints. The highlight is that the proposed neural controller not only owns less online-updated neural parameters, but also has the ability of handling input–output constraints. The stability of the proposed control scheme is established using the Lyapunov theory. Simulation results show that the proposed controller can ensure good tracing performance of the morphing aircraft in the fixed configuration and morphing process.


Minimal learning parameter Barrier Lyapunov functions Input and output constraints Sliding mode differentiator 



The authors would like to express their sincere thanks to anonymous reviewers for their helpful suggestions for improving the technique note. This work is partially supported by the Natural Science Foundation of China (Grant Nos. 61374032, 61573286), Aeronautical Science Foundation of China (Grant No. 20140753012).


  1. 1.
    Shi, R., Peng, J.: Morphing strategy design for variable wing aircraft. In: 15th AIAA Aciation Technology, Integration, and Operations Conference, Dallas, TX (2015)Google Scholar
  2. 2.
    Wu, Z., Lu, J., Rajput, J., Shi, J., Ma, W.: Adaptive neural control based on high order integral chained differentiator for morphing aircraft. Math. Probl. Eng. (2015). doi: 10.1155/2015/787931 MathSciNetGoogle Scholar
  3. 3.
    Seigler, T.M., Neal, D.A., Bae, J.-S., Inman, D.J.: Modeling and flight control of large-scale morphing aircraft. J. Aircr. 44(4), 1077–1087 (2007). doi: 10.2514/1.21439 CrossRefGoogle Scholar
  4. 4.
    Baldelli, D.H., Lee, D.-H., Sánchez Peña, R.S., Cannon, B.: Modeling and control of an aeroelastic morphing vehicle. J. Guid. Control Dyn. 31(6), 1687–1699 (2008). doi: 10.2514/1.35445 CrossRefGoogle Scholar
  5. 5.
    Yue, T., Wang, L., Ai, J.: Gain self-scheduled H\(\infty \) control for morphing aircraft in the wing transition process based on an LPV model. Chin. J. Aeronaut. 26(4), 909–917 (2013)CrossRefGoogle Scholar
  6. 6.
    Wang, T., Dong, C., Wang, Q.: Finite-time boundedness control of morphing aircraft based on switched systems approach. Opt. Int. J. Light Electron Opt. 126(23), 4436–4445 (2015). doi: 10.1016/j.ijleo.2015.08.040 CrossRefGoogle Scholar
  7. 7.
    Jiang, W., Dong, C., Wang, Q.: A systematic method of smooth switching LPV controllers design for a morphing aircraft. Chin. J. Aeronaut. 28(6), 1640–1649 (2015). doi: 10.1016/j.cja.2015.10.005 CrossRefGoogle Scholar
  8. 8.
    Wang, N., Qian, C., Sun, J.C., Liu, Y.C.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016). doi: 10.1109/TCST.2015.2496585 CrossRefGoogle Scholar
  9. 9.
    Nikdel, N., Badamchizadeh, M., Azimirad, V., Nazari, M.A.: Fractional-order adaptive backstepping control of robotic manipulators in the presence of model uncertainties and external disturbances. IEEE Trans. Ind. Electron. 63(10), 6249–6256 (2016). doi: 10.1109/TIE.2016.2577624 CrossRefGoogle Scholar
  10. 10.
    Aggarwal, A., Kumar, M., Rawat, T.K., Upadhyay, D.K.: Optimal design of 2D FIR filters with quadrantally symmetric properties using fractional derivative constraints. Circuits Syst. Signal Process. 35(6), 2213–2257 (2016). doi: 10.1007/s00034-016-0283-x CrossRefzbMATHGoogle Scholar
  11. 11.
    Kumar, M., Rawat, T.K.: Fractional order digital differentiator design based on power function and least squares. Int. J. Electron. (2016). doi: 10.1080/00207217.2016.1138520 Google Scholar
  12. 12.
    Kumar, M., Rawat, T.K.: Design of a variable fractional delay filter using comprehensive least square method encompassing all delay values. J. Circuits Syst. Comput. (2015). doi: 10.1142/S0218126615501169 Google Scholar
  13. 13.
    Aggarwal, A., Rawat, T.K., Kumar, M., Upadhyay, D.K.: Efficient design of digital FIR differentiator using L1-method. Radioengineering 25(2), 86–92 (2016)CrossRefGoogle Scholar
  14. 14.
    Yixin, D., Passino, K.M.: Adaptive neural/fuzzy control for interpolated nonlinear systems. IEEE Trans. Fuzzy Syst. 10(5), 583–595 (2002). doi: 10.1109/tfuzz.2002.803493 CrossRefGoogle Scholar
  15. 15.
    Tong, S., Zhang, L., Li, Y.: Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 37–47 (2016). doi: 10.1109/tsmc.2015.2426131 CrossRefGoogle Scholar
  16. 16.
    Wang, N., Er, M.J.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Control Syst. Technol. 23(3), 991–1002 (2015). doi: 10.1109/TCST.2014.2359880 CrossRefGoogle Scholar
  17. 17.
    Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016). doi: 10.1109/TCST.2015.2510587 CrossRefGoogle Scholar
  18. 18.
    Wang, N., Er, M.J., Sun, J.C., Liu, Y.C.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46(7), 1511–1523 (2016). doi: 10.1109/TCYB.2015.2451116 CrossRefGoogle Scholar
  19. 19.
    An Min, Z., Zeng Guang, H., Min, T.: Adaptive control of a class of nonlinear pure feedback systems using fuzzy backstepping approach. IEEE Trans. Fuzzy Syst. 16(4), 886–897 (2008)CrossRefGoogle Scholar
  20. 20.
    Qi, Z., Peng, S., Jinjun, L., Shengyuan, X.: Adaptive output-feedback fuzzy tracking control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 19(5), 972–982 (2011). doi: 10.1109/tfuzz.2011.2158652 CrossRefGoogle Scholar
  21. 21.
    Li, Y., Tong, S.: Adaptive fuzzy output-feedback control of pure-feedback uncertain nonlinear systems with unknown dead zone. IEEE Trans. Fuzzy Syst. 22(5), 1341–1347 (2014). doi: 10.1109/tfuzz.2013.2280146 CrossRefGoogle Scholar
  22. 22.
    Li, T.S., Wang, D., Feng, G., Tong, S.C.: A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. 40(3), 915–927 (2010). doi: 10.1109/TSMCB.2009.2033563 CrossRefGoogle Scholar
  23. 23.
    Yoo, S.J.: Adaptive output-feedback control for nonlinear time-delay systems in pure-feedback form. J. Frankl. Inst. 351(7), 3899–3913 (2014). doi: 10.1016/j.jfranklin.2014.04.003 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, Y., Wu, H.: Adaptive robust backstepping control for a class of uncertain dynamical systems using neural networks. Nonlinear Dyn. 81(4), 1597–1610 (2015). doi: 10.1007/s11071-015-2093-2 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jiang, B., Shen, Q., Shi, P.: Neural-networked adaptive tracking control for switched nonlinear pure-feedback systems under arbitrary switching. Automatica 61, 119–125 (2015). doi: 10.1016/j.automatica.2015.08.001 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Xu, B., Yang, C., Pan, Y.: Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neural Netw. Learn Syst. 26(10), 2563–2575 (2015). doi: 10.1109/TNNLS.2015.2456972 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Xu, B.: Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn. 80(3), 1509–1520 (2015). doi: 10.1007/s11071-015-1958-8 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Xu, B., Shi, Z., Yang, C., Sun, F.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Cybern. 44(12), 2626–2634 (2014). doi: 10.1109/TCYB.2014.2311824 CrossRefGoogle Scholar
  29. 29.
    He, W., Ge, S.S.: Vibration control of a flexible string with both boundary input and output constraints. IEEE Trans. Control Syst. Technol. 23(4), 1245–1254 (2015). doi: 10.1109/TCST.2014.2362718 CrossRefGoogle Scholar
  30. 30.
    Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011). doi: 10.1016/j.automatica.2011.01.025 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Chen, M., Tao, G., Jiang, B.: Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2086–2097 (2015). doi: 10.1109/TNNLS.2014.2360933
  32. 32.
    Li, Y., Tong, S., Li, T.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybern. 45(10), 2299–2308 (2015). doi: 10.1109/TCYB.2014.2370645 CrossRefGoogle Scholar
  33. 33.
    Zong, Q., Wang, F., Tian, B., Su, R.: Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty. Nonlinear Dyn. 78(1), 289–315 (2014). doi: 10.1007/s11071-014-1440-z MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bu, X., Wu, X., Ma, Z., Zhang, R., Huang, J.: Novel auxiliary error compensation design for the adaptive neural control of a constrained flexible air-breathing hypersonic vehicle. Neurocomputing 171, 313–324 (2016). doi: 10.1016/j.neucom.2015.06.058 CrossRefGoogle Scholar
  35. 35.
    Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009). doi: 10.1016/j.automatica.2008.11.017 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Ren, B., Ge, S.S., Tee, K.P., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–1345 (2010). doi: 10.1109/TNN.2010.2047115 CrossRefGoogle Scholar
  37. 37.
    Liu, Y., Li, J., Tong, S., Chen, C.L.P.: Neural network control-based adaptive learning design for nonlinear systems with full-state constraints. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi: 10.1109/TNNLS.2015.2508926 MathSciNetGoogle Scholar
  38. 38.
    Zhai, D., An, L., Li, J., Zhang, Q.: Simplified filtering-based adaptive fuzzy dynamic surface control approach for non-linear strict-feedback systems. IET Control Theory Appl. 10(5), 493–503 (2016). doi: 10.1049/iet-cta.2015.0264 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Liu, Y.-J., Tong, S.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016). doi: 10.1016/j.automatica.2015.10.034 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kim, B.S., Yoo, S.J.: Approximation-based adaptive tracking control of nonlinear pure-feedback systems with time-varying output constraints. Int. J. Control Autom. Syst. 13(2), 257–265 (2014). doi: 10.1007/s12555-014-0084-6
  41. 41.
    Kim, B.S., Yoo, S.J.: Adaptive control of nonlinear pure-feedback systems with output constraints: integral barrier Lyapunov functional approach. Int. J. Control Autom. Syst. 13(1), 249–256 (2014). doi: 10.1007/s12555-014-0018-3 CrossRefGoogle Scholar
  42. 42.
    Gao, Y., Tong, S., Li, Y.: Observer-based adaptive fuzzy output constrained control for MIMO nonlinear systems with unknown control directions. Fuzzy Sets Syst. 290, 79–99 (2016). doi: 10.1016/j.fss.2015.04.005 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Meng, W., Yang, Q., Sun, Y.: Adaptive neural control of nonlinear MIMO systems with time-varying output constraints. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1074–1085 (2015). doi: 10.1109/TNNLS.2014.2333878 MathSciNetCrossRefGoogle Scholar
  44. 44.
    Liu, Z., Lai, G., Zhang, Y., Chen, C.L.: Adaptive neural output feedback control of output-constrained nonlinear systems with unknown output nonlinearity. IEEE Trans. Neural Netw. Learn. Syst. 26(8), 1789–1802 (2015). doi: 10.1109/TNNLS.2015.2420661 MathSciNetCrossRefGoogle Scholar
  45. 45.
    He, W., Zhang, S., Ge, S.S.: Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans. Ind. Electron. 61(8), 4126–4133 (2014). doi: 10.1109/tie.2013.2288200 CrossRefGoogle Scholar
  46. 46.
    He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016). doi: 10.1109/TCYB.2015.2411285 CrossRefGoogle Scholar
  47. 47.
    Li, Y., Li, T., Jing, X.: Indirect adaptive fuzzy control for input and output constrained nonlinear systems using a barrier Lyapunov function. Int. J. Adapt. Control Signal Process. 28(2), 184–199 (2014). doi: 10.1002/acs.2410 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Li, Y., Tong, S., Li, T.: Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets Syst. 248, 138–155 (2014). doi: 10.1016/j.fss.2013.11.006 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Chen, M., Ge, S.S.: Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Trans. Ind. Electron. 62(12), 7706–7716 (2015). doi: 10.1109/tie.2015.2455053 CrossRefGoogle Scholar
  50. 50.
    Chen, M., Yu, J.: Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer. Chin. J. Aeron. 28(3), 853–864 (2015). doi: 10.1016/j.cja.2015.04.020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Zhonghua Wu
    • 1
  • Jingchao Lu
    • 1
  • Qing Zhou
    • 2
  • Jingping Shi
    • 1
  1. 1.School of AutomationNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Xi’an Aeronautics Computing Technique Research InstituteAVICXi’anChina

Personalised recommendations