Nonlinear Dynamics

, Volume 87, Issue 4, pp 2147–2169 | Cite as

Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties

  • Veer AlakshendraEmail author
  • Shital S. Chiddarwar
Original Paper


This paper presents a novel implementation of an adaptive robust second-order sliding mode control (ARSSMC) on a mobile robot with four Mecanum wheels. Each wheel of the mobile robot is actuated by separate motors. It is the first time that higher-order sliding mode control method is implemented for the trajectory tracking control of Mecanum-wheeled mobile robot. Kinematic and dynamic modeling of the robot is done to derive an equation of motion in the presence of friction, external force disturbance, and uncertainties. In order to make the system robust, second-order sliding mode control law is derived. Further, adaptive laws are defined for adaptive estimation of switching gains. To check the tracking performance of the proposed controller, simulations are performed and comparisons of the obtained results are made with adaptive robust sliding mode control (ARSMC) and PID controller. In addition, a new and low-cost experimental approach is proposed to implement the proposed control law on a real robot. Experimental results prove that without compromising on the dynamics of the robot real-time implementation is possible in less computational time. The simulation and experimental results obtained confirms the superiority of ARSSMC over ARSMC and PID controller in terms of integral square error (ISE), integral absolute error (IAE), and integral time-weighted absolute error (ITAE), control energy and total variance (TV).


Mecanum wheel Robust tracking Adaptive control Second-order sliding mode control 

Supplementary material

Supplementary material 1 (mp4 140135 KB)


  1. 1.
    Pin, F.G., Killough, S.M.: A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans. Robot. Autom. 10(4), 480–489 (1994)CrossRefGoogle Scholar
  2. 2.
    Tzafestas, S.G.: Introduction to Mobile Robot Control. Elsevier, Waltham (2014)Google Scholar
  3. 3.
    Muir, P.F., Neuman, C.P.: Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot. In: Cox, I.J., Wilfong, G.T. (eds.) Autonomous Robot Vehicles, pp. 25–31. Springer, New York (1990)CrossRefGoogle Scholar
  4. 4.
    Conceicao, A.S., Moreira, A.P., Costa, P.J.: Practical approach of modeling and parameters estimation for omnidirectional mobile robots. IEEE/ASME Trans. Mechatron. 14(3), 377–381 (2009)CrossRefGoogle Scholar
  5. 5.
    Tlale, N., De Villiers, M.: Kinematics and dynamics modelling of a mecanum wheeled mobile platform. In: 15th International Conference on Mechatronics and Machine Vision in Practice. pp. 657-662. IEEE (2008)Google Scholar
  6. 6.
    De Villiers, M., Tlale, N.S.: Development of a control model for a four wheel mecanum vehicle. J. Dyn. Syst. Meas. Control. 134(1), 011007 (2012)CrossRefGoogle Scholar
  7. 7.
    Yang, J.M., Kim, J.H.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. Autom. 15(3), 578–587 (1999)CrossRefGoogle Scholar
  8. 8.
    Viet, T.D., Doan, P.T., Hung, N., Kim, H.K., Kim, S.B.: Tracking control of a three-wheeled omnidirectional mobile manipulator system with disturbance and friction. J. Mech. Sci. Technol. 26(7), 2197–2211 (2012)CrossRefGoogle Scholar
  9. 9.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)CrossRefGoogle Scholar
  10. 10.
    Purwin, O., D Andrea, R.: Trajectory generation and control for four wheeled omnidirectional vehicles. Robot. Auton. Syst. 54(1), 13–22 (2006)CrossRefGoogle Scholar
  11. 11.
    Xu, D., Zhao, D., Yi, J., Tan, X.: Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach. IEEE Trans. Syst. Man Cybern. Part B (Cybern). 39(3), 788–799 (2009)CrossRefGoogle Scholar
  12. 12.
    Ryu, J.C., Agrawal, S.K.: Differential flatness-based robust control of mobile robots in the presence of slip. Int. J. Robot. Res. 30(4), 463–475 (2011)CrossRefGoogle Scholar
  13. 13.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer Science and Business Media, New York (2013)zbMATHGoogle Scholar
  14. 14.
    Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the 35th IEEE Conference on Decision and Control, vol. 4, pp. 4591–4596. IEEE (1996)Google Scholar
  15. 15.
    Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-Mechanical Systems. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  16. 16.
    Fridman, L.M.: An averaging approach to chattering. IEEE Trans. Autom. Control. 46(8), 1260–1265 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fridman, L.M.: Chattering analysis in sliding mode systems with inertial sensors. Int. J. Control. 76(9–10), 906–912 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Boiko, I., Fridman, L., Iriarte, R.: Analysis of chattering in continuous sliding mode control. In: Proceedings of the 2005 American Control Conference, pp. 2439–2444. IEEE (2005)Google Scholar
  19. 19.
    Bartolini, G., Pisano, A., Punta, E., Usai, E.: A survey of applications of second-order sliding mode control to mechanical systems. Int. J. Control. 76(9–10), 875–892 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Levant, A.: Principles of 2-sliding mode design. Automatica 43(4), 576–586 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mondal, S., Mahanta, C.: Nonlinear sliding surface based second order sliding mode controller for uncertain linear systems. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3760–3769 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Salgado-Jimenez, T., Jouvencel, B.: Using a high order sliding modes for diving control a torpedo autonomous underwater vehicle. In: Proceedings of OCEANS 2003, vol. 2, pp. 934–939. IEEE (2003)Google Scholar
  23. 23.
    Mihoub, M., Nouri, A.S., Abdennour, R.B.: Real-time application of discrete second order sliding mode control to a chemical reactor. Control Eng. Pract. 17(9), 1089–1095 (2009)CrossRefGoogle Scholar
  24. 24.
    Chen, C.Y., Li, T.H., Yeh, Y.C., Chang, C.C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19(2), 156–166 (2009)CrossRefGoogle Scholar
  25. 25.
    Chen, C.Y., Li, T.H., Yeh, Y.C.: EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots. Inf. Sci. 179(1), 180–195 (2009)CrossRefzbMATHGoogle Scholar
  26. 26.
    Chen, N., Song, F., Li, G., Sun, X., Ai, C.: An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2885–2899 (2013)Google Scholar
  27. 27.
    Cui, M., Liu, W., Liu, H., Jiang, H., Wang, Z.: Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties. Nonlinear Dyn. 83(1), 667–683 (2016)Google Scholar
  28. 28.
    Huang, J.T., Van Hung, T., Tseng, M.L.: Smooth switching robust adaptive control for omnidirectional mobile robots. IEEE Trans. Control Syst. Technol. 23(5), 1986–1993 (2015)Google Scholar
  29. 29.
    Wang, H., Liu, L., He, P., Yu, M., Do, M.T., Kong, H., Man, Z.: Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dyn. 85(2), 1331–1344 (2016)CrossRefGoogle Scholar
  30. 30.
    Slotine, J., Li, W.: Applied Nonlinear Control. Prentice-Hall, New Jersey (1991)zbMATHGoogle Scholar
  31. 31.
    Lewis, R.M., Torczon, V., Trosset, M.W.: Direct search methods: then and now. J. Comput. Appl. Math. 124(1), 191–207 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations