Nonlinear Dynamics

, Volume 87, Issue 3, pp 1693–1701 | Cite as

Stability of Bragg grating solitons in a semilinear dual-core system with cubic–quintic nonlinearity

Original Paper


The existence and stability of quiescent Bragg grating solitons in a dual-core fiber, where one core contains a Bragg grating with cubic–quintic nonlinearity, and the other is a linear are studied. The model admits two disjoint bandgaps when the relative group velocity in the linear core, c, is zero: one in the upper half and the other in the lower half of the system’s linear spectrum. In the general case (i.e., \(c\ne 0\)), a central gap (which is a genuine gap) is formed, while the lower and upper gaps overlap with one branch of continuous spectrum, and therefore, they are not genuine bandgaps. For quiescent solitons, exact analytical solutions are found in implicit form for \(c=0\). For nonzero c, soliton solutions are obtained numerically. The system supports two disjoint families (referred to as Type 1 and Type 2) of zero-velocity soliton solutions, separated by a border. Both Type 1 and Type 2 soliton solutions exist throughout the upper and lower gaps but not in the central gap. The stability of both soliton families is investigated by means of systematic numerical simulations. It is found that Type 2 solitons are always unstable and are destroyed upon propagation. On the other hand, unstable Type 1 solitons may either decay into radiation or radiate some energy and evolve into a moving Type 1 soliton. Also, in the case of Type 1 solitons, we have identified stable regions in the plane of quintic nonlinearity and frequency. The influence of coupling coefficient and the relative group velocity in the linear core on the stability of solitons are analyzed.


Bragg grating soliton Fiber Bragg grating Cubic–quintic nonlinearity 


  1. 1.
    Kashyap, R.: Fiber Bragg Gratings. Academic Press, Boston (2010)Google Scholar
  2. 2.
    Loh, W.H., Laming, R.I., Robinson, N., Cavaciuti, A., Vaninetti, F., Anderson, C.J., Zervas, M.N., Cole, M.J.: Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fiber gratings. IEEE Photon. Technol. Lett. 8, 944–946 (1996)CrossRefGoogle Scholar
  3. 3.
    Litchinitser, N.M., Eggleton, B.J., Patterson, D.B.: Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression. J. Lightwave Technol. 15, 1303–1313 (1997)CrossRefGoogle Scholar
  4. 4.
    Sankey, N.D., Prelewitz, D.F., Brown, T.G.: All-optical switching in a nonlinear periodic-waveguide structure. Appl. Phys. Lett. 60, 1427–1429 (1992)CrossRefGoogle Scholar
  5. 5.
    LaRochelle, S., Hibino, Y., Mizrahi, V., Stegeman, G.I.: All-optical switching of grating transmission using cross-phase modulation in optical fibres. Electron. Lett. 26, 1459–1460 (1990)CrossRefGoogle Scholar
  6. 6.
    Winful, H.G.: Pulse compression in optical fiber filters. Appl. Phys. Lett. 46, 527–529 (1985)CrossRefGoogle Scholar
  7. 7.
    Winful, H.G., Marburger, J.H., Garmire, E.: Theory of bistability in nonlinear distributed feedback structures. Appl. Phys. Lett. 35, 379–381 (1979)CrossRefGoogle Scholar
  8. 8.
    Radic, S., George, N., Agrawal, G.P.: Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures. J. Opt. Soc. Am. B 12, 671–680 (1995)CrossRefGoogle Scholar
  9. 9.
    Russell, P.S.J.: Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures. J. Mod. Opt. 38, 1599–1619 (1991)CrossRefGoogle Scholar
  10. 10.
    de Sterke, C.M., Sipe, J.E.: Gap solitons. Prog. Opt. 33, 203–260 (1994)CrossRefGoogle Scholar
  11. 11.
    Aceves, A.B., Wabnitz, S.: Self-induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A 141, 37–42 (1989)CrossRefGoogle Scholar
  12. 12.
    Christadoulides, D.N., Joseph, R.I.: Slow Bragg solitons in nonlinear periodic structures. Phys. Rev. Lett. 62, 1746–1749 (1989)CrossRefGoogle Scholar
  13. 13.
    Sipe, J.E., Winful, H.G.: Nonlinear Schrödinger solitons in a periodic structure. Opt. Lett. 13, 132–133 (1988)CrossRefGoogle Scholar
  14. 14.
    Barashenkov, I.V., Pelinovsky, D.E., Zemlyanaya, E.V.: Vibrations and oscillatory instabilities of gap solitons. Phys. Rev. Lett. 80, 5117–5120 (1998)CrossRefGoogle Scholar
  15. 15.
    Mak, W.C.K., Malomed, B.A., Chu, P.L.: Formation of a standing-light pulse through collision of gap soliton. Phys. Rev. E 68, 026609 (2003)CrossRefGoogle Scholar
  16. 16.
    Neill, D.R., Atai, J.: Collision dynamics of gap solitons in Kerr media. Phys. Lett. A 353, 416–421 (2006)CrossRefGoogle Scholar
  17. 17.
    Eggleton, B.J., de Sterke, C.M., Slusher, R.E.: Nonlinear pulse propagation in Bragg gratings. J. Opt. Soc. Am. B 14, 2980–2993 (1997)CrossRefGoogle Scholar
  18. 18.
    Benjamin, J.E., Slusher, R.E., de Sterke, C.M., Krug, P.A., Sipe, J.E.: Bragg grating solitons. Phys. Rev. Lett. 76, 1627–1630 (1996)CrossRefGoogle Scholar
  19. 19.
    Taverner, D., Broderick, N.G.R., Richardson, D.J., Laming, R.I., Ibsen, M.: Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating. Opt. Lett. 23, 328–330 (1998)CrossRefGoogle Scholar
  20. 20.
    de Sterke, C.M., Eggleton, B.J., Krug, P.A.: High-intensity pulse propagation in uniform gratings and grating superstructures. J. Lightwave Technol. 15, 1494–1502 (1997)CrossRefGoogle Scholar
  21. 21.
    Mok, J.T., de Sterke, C.M., Littler, I.C.M., Eggleton, B.J.: Dispersionless slow light using gap solitons. Nat. Phys. 2, 775–780 (2006)CrossRefGoogle Scholar
  22. 22.
    Conti, C., Trillo, S., Assanto, G.: Doubly resonant Bragg simultons via second-harmonic generation. Phys. Rev. Lett. 78, 2341–2344 (1997)CrossRefGoogle Scholar
  23. 23.
    He, H., Drummond, P.D.: Ideal soliton environment using parametric band gaps. Phys. Rev. Lett. 78, 4311–4315 (1997)CrossRefGoogle Scholar
  24. 24.
    Mak, W.C.K., Malomed, B.A., Chu, P.L.: Solitary waves in asymmetric coupled waveguides with quadratic nonlinearity. Opt. Commun. 154, 145–151 (1998)CrossRefGoogle Scholar
  25. 25.
    Atai, J.: Interaction of Bragg grating solitons in a cubic-quintic medium. J. Opt. B: Quantum Semiclass. 6, S177–S181 (2004)CrossRefGoogle Scholar
  26. 26.
    Atai, J., Malomed, B.A.: Families of Bragg-grating solitons in a cubic-quintic medium. Phys. Lett. A 284, 247–252 (2001)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Dasanayaka, S., Atai, J.: Stability and collisions of moving Bragg grating solitons in a cubic-quintic nonlinear medium. J. Opt. Soc. Am. B 30, 396–404 (2013)CrossRefMATHGoogle Scholar
  28. 28.
    Dasanayaka, S., Atai, J.: Interactions of Bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity. Phys. Rev. E 84, 026613 (2011)CrossRefMATHGoogle Scholar
  29. 29.
    Dasanayaka, S., Atai, J.: Stability of Bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity. Phys. Lett. A 375, 225–229 (2010)CrossRefMATHGoogle Scholar
  30. 30.
    Mak, W.C.K., Chu, P.L., Malomed, B.A.: Solitary waves in coupled nonlinear waveguides with Bragg gratings. J. Opt. Soc. Am. B 15, 1685–1692 (1998)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Atai, J., Malomed, B.A.: Solitary waves in systems with separated Bragg grating and nonlinearity. Phys. Rev. E 64, 066617 (2001)CrossRefGoogle Scholar
  32. 32.
    Atai, J., Malomed, B.A.: Bragg-grating solitons in a semilinear dual-core system. Phys. Rev. E 62, 8713–8718 (2000)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Atai, J., Malomed, B.A.: Gap solitons in Bragg gratings with dispersive reflectivity. Phys. Lett. A 342, 404–412 (2005)CrossRefMATHGoogle Scholar
  34. 34.
    Neil, D.R., Atai, J., Malomed, B.A.: Gap solitons in a hollow optical fiber in the normal dispersion regime. Phys. Lett. A 367, 73–82 (2007)CrossRefGoogle Scholar
  35. 35.
    Skryabin, D.V.: Coupled core-surface solitons in photonic crystal fibers. Opt. Expr. 12, 4841–4846 (2004)CrossRefGoogle Scholar
  36. 36.
    Atai, J., Malomed, B.A., Merhasin, I.M.: Stability and collisions of gap solitons in a model of a hollow optical fiber. Opt. Commun. 265, 342–348 (2006)CrossRefGoogle Scholar
  37. 37.
    Atai, J., Malomed, B.A.: Spatial solitons in a medium composed of self-focusing and self-defocusing layers. Phys. Lett. A 298, 140–148 (2002)CrossRefGoogle Scholar
  38. 38.
    Gorbach, A.V., Malomed, B.A., Skryabin, D.V.: Gap polariton solitons. Phys. Lett. A 373, 3024–3027 (2009)CrossRefMATHGoogle Scholar
  39. 39.
    Trillo, S., Wabnitz, S.: Nonlinear nonreciprocity in a coherent mismatched directional coupler. Appl. Phys. Lett. 49, 752–754 (1986)CrossRefGoogle Scholar
  40. 40.
    Fraga, W.B., Menezes, J.W.M., da Silva, M.G., Sobrinho, C.S., Sombra, A.S.B.: All optical logic gates based on an asymmetric nonlinear directional coupler. Opt. Commun. 262, 32–37 (2006)CrossRefGoogle Scholar
  41. 41.
    Romagnoli, M., Trillo, S., Wabnitz, S.: Soliton switching in nonlinear couplers. Opt. Quantum Electron. 24, S1237–S1267 (1992)CrossRefGoogle Scholar
  42. 42.
    Soto-Crespo, J.M., Akhmediev, N.N.: Stability of the soliton states in a nonlinear fiber coupler. Phys. Rev. E 48, 4710–4715 (1993)CrossRefGoogle Scholar
  43. 43.
    Akhmediev, N.N., Ankiewicz, A.A.: Novel soliton states and bifurcation phenomena in nonlinear fiber couplers. Phys. Rev. Lett. 70, 2395–2398 (1993)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Mak, W.C.K., Chu, P.L., Malomed, B.A.: Asymmetric solitons in coupled second-harmonic-generating waveguides. Phys. Rev. E 57, 1092–1103 (1998)CrossRefGoogle Scholar
  45. 45.
    Atai, J., Chen, Y.: Nonlinear couplers composed of different nonlinear cores. J. Appl. Phys. 59, 24–27 (1992)CrossRefGoogle Scholar
  46. 46.
    Atai, J., Chen, Y.: Nonlinear mismatches between two cores of saturable nonlinear couplers. IEEE J. Quantum Electron. 29, 242–249 (1993)CrossRefGoogle Scholar
  47. 47.
    Bertolotti, M., Monaco, M., Sibilia, C.: Role of the asymmetry in a third-order nonlinear directional coupler. Opt. Commun. 116, 405–410 (1995)CrossRefGoogle Scholar
  48. 48.
    Wang, L., Zhang, J., Chong, L., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)CrossRefGoogle Scholar
  49. 49.
    Wang, L., Zhang, J., Wang, Z.Q., Chong, L., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)CrossRefGoogle Scholar
  50. 50.
    Lü, X., Ma, W., Yu, J., Chaudry, M.K.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 31, 40–46 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Lü, X., Lin, F.: Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simul. 32, 241–261 (2016)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Lü, X., Ma, W., Chaudry, M.K.: A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg-de Vries-like model. Appl. Math. Lett. 50, 37–42 (2015)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Lü, X.: Madelung fluid description on a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn. 81, 239–247 (2015)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Lü, X., Lin, F., Qi, F.: Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton solutions. Appl. Math. Model. 39, 3221–3226 (2015)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Lü, X., Ma, W., Yu, J., Lin, F., Chaudry, M.K.: Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model. Nonlinear Dyn. 82, 1211–1220 (2015)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Kong, L., Dai, C.: Some discussions about variable separation of nonlinear models using Riccati equation expansion method. Nonlinear Dyn. 81, 1553–1561 (2015)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Dai, C., Wang, Y.: Controllable combined Peregrine soliton and Kuznetsov-Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Dai, C., Xu, Y.: Exact solutions for a Wick-type stochastic reaction Duffing equation. Appl. Math. Model. 39, 7420–7426 (2015)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Dai, C., Wang, Y., Liu, J.: Spatiotemporal Hermite-Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 84, 1157–1161 (2016)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Dai, C., Wang, Y.: Spatiotemporal localizations in (3+1)-dimensional PT-symmetric and strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 2453–2459 (2016)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Wang, Y., Dai, C.: Caution with respect to “new” variable separation solutions and their corresponding localized structures. Appl. Math. Model. 40, 3475–3482 (2016)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Chowdhury, S.A.M.S., Atai, J.: Stability of Bragg grating solitons in a semilinear dual core system with dispersive reflectivity. IEEE J. Quantum Electron. 50, 458–465 (2014)CrossRefGoogle Scholar
  63. 63.
    Boudebs, G., Cherukulappurath, S., Leblond, H., Troles, J., Smektala, F., Sanchez, F.: Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses. Opt. Commun. 219, 427–433 (2003)CrossRefGoogle Scholar
  64. 64.
    Zhan, C., Zhang, D., Zhu, D., Wang, D., Li, Y., Li, D., Lu, Z., Zhao, L., Nie, Y.: Third- and fifth-order optical nonlinearities in a new stilbazolium derivative. J. Opt. Soc. Am. B 19, 369–375 (2002)CrossRefGoogle Scholar
  65. 65.
    Lawrence, B.L., Cha, M., Torruellas, W.E., Stegeman, G.I., Etemad, S., Baker, G., Kajzar, F.: Measurement of the complex nonlinear refractive-index of single-crystal P-toluene sulfonate at 1064-nm. Appl. Phys. Lett. 64, 2773–2775 (1994)CrossRefGoogle Scholar
  66. 66.
    Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (2013)MATHGoogle Scholar
  67. 67.
    Maimistov, A.I., Malomed, B.A., Desyatnikov, A.: A potential of incoherent attraction between multidimensional solitons. Phys. Lett. A 254, 179–184 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Electrical and Information EngineeringThe University of SydneySydneyAustralia

Personalised recommendations