Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lyapunov spectrum of chaotic maps with a long-range coupling mediated by a diffusing substance


We investigate analytically and numerically coupled lattices of chaotic maps where the interaction is non-local, i.e., each site is coupled to all the other sites but the interaction strength decreases exponentially with the lattice distance. This kind of coupling models an assembly of pointlike chaotic oscillators in which the coupling is mediated by a rapidly diffusing chemical substance. We consider a case of a lattice of Bernoulli maps, for which the Lyapunov spectrum can be analytically computed and also the completely synchronized state of chaotic Ulam maps, for which we derive analytically the Lyapunov spectrum.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond: A Constructive Approach with Applications. Springer, Berlin (2001)

  2. 2.

    Chazottes, J.-R., Fernandez, B. (eds.): Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems. Springer, Berlin (2005)

  3. 3.

    Mitchel, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)

  4. 4.

    Murray, J.D.: Mathematical Biology, vol. 1, 3rd edn. Springer, Berlin (2002)

  5. 5.

    Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)

  6. 6.

    Wiesenfeld, K., Colet, P., Strogatz, S.H.: Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys. Rev. E. 57, 1563 (1998)

  7. 7.

    Kozyreff, G., Vladimirov, A.G., Mandel, P.: Global coupling with time delay in an array of semiconductor lasers. Phys. Rev. Lett. 85, 3809 (2000)

  8. 8.

    Strogatz, S.H., Mirollo, R.E., Matthews, P.C.: Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping. Phys. Rev. Lett. 68, 2730 (1992)

  9. 9.

    Breakspear, M., Heitmann, S., Daffertshofer, A.: Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 4, 190 (2010)

  10. 10.

    Ferrari, F.A.S., Viana, R.L., Lopes, S.R., Stoop, R.: Phase synchronization of coupled bursting neurons and the generalized Kuramoto model. Neural Netw. 66, 107 (2015)

  11. 11.

    Kuramoto, Y.: Scaling behavior of turbulent oscillators with non-local interaction. Prog. Theor. Phys. 94, 321–330 (1995)

  12. 12.

    Kuramoto, Y., Nakao, H.: Origin of power-law spatial correlations in distributed oscillators and maps with nonlocal coupling. Phys. Rev. Lett. 76, 4352 (1996)

  13. 13.

    Kuramoto, Y., Nakao, H.: Power-law spatial correlations and the onset of individual motions in self-oscillatory media with non-local coupling. Physica D. 103, 294–313 (1997)

  14. 14.

    Viana, R.L., Batista, A.M., Batista, C.A.S., de Pontes, J.C.A., Silva, F.A.S., Lopes, S.R.: Bursting synchronization in networks with long-range coupling mediated by a diffusing chemical substance. Commun. Nonlinear Sci. Numer. Simul. 17, 2924–2942 (2012)

  15. 15.

    Silva, F.A.S., Lopes, S.R., Viana, R.L.: Synchronization of biological clock cells with a coupling mediated by the local concentration of a diffusing substance. Commun. Nonlinear Sci. Numer. Simul. 35, 37–52 (2016)

  16. 16.

    Batista, A.M., Viana, R.L.: Kolmogorov-Sinai entropy for locally coupled piecewise linear maps. Phys. A 308, 125–134 (2002)

  17. 17.

    Anteneodo, C., Pinto, S.E.S., Batista, A.M., Viana, R.L.: Analytical results for coupled-map lattices with long-range interactions. Phys. Rev. E 68, 045202 (2003)

  18. 18.

    Anteneodo, C., Batista, A.M., Viana, R.L.: Chaos synchronization in long-range coupled map lattices. Phys. Lett. A 326, 227–233 (2004)

  19. 19.

    Batista, A.M., Viana, R.L.: Lyapunov exponents of a lattice of chaotic maps with a power law coupling. Phys. Lett. A 286, 134 (2001)

  20. 20.

    dos Santos, A.M., Woellner, C.F., Lopes, S.R., Batista, A.M., Viana, R.L.: Lyapunov spectrum of a lattice of chaotic systems with local and non-local couplings, Chaos. Solit. Fract. 32, 702 (2007)

  21. 21.

    González-Avella, J.C., Anteneodo, C.: Complete synchronization equivalence in asynchronous and delayed coupled maps. Phys. Rev. E 93, 052230 (2016)

  22. 22.

    Bagchi, D., Tsallis, C.: Sensitivity to initial conditions of a \(d\)-dimensional long-range-interaction quartic Fermi-Pasta-Ulam model: Universal scaling. Phys. Rev. E 93, 062213 (2016)

  23. 23.

    Christodoulidi, H., Bountis, T., Drossos, L.: Numerical integration of variational equations for Hamiltonian systems with long range interactions. Appl. Numer. Math. 104, 158 (2016)

  24. 24.

    Laffargue, T., Sollich, P., Tailleur, J., van Wijland, F.: Large-scale fluctuations of the largest Lyapunov exponent in diffusive systems. Europhys. Lett. 110, 10006 (2015)

  25. 25.

    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Benjamin-Cummings Publishing Co, San Francisco (1986)

  26. 26.

    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

  27. 27.

    Kaneko, K.: Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Phys. D 41, 137 (1990)

  28. 28.

    Kaneko, K.: Pattern dynamics in spatiotemporal chaos: pattern selection, diffusion of defect and pattern competition intermettency. Phys. D. 34, 1–41 (1989)

  29. 29.

    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The art of scientific computing. University Press, Cambridge (1992)

  30. 30.

    Pesin, Ya B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32, 55–114 (1977)

  31. 31.

    Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat. 9, 83–87 (1978)

  32. 32.

    Ott, E.: Chaos in Dynamical Systems. University Press, Cambridge (1994)

  33. 33.

    Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32–47 (1982)

  34. 34.

    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

  35. 35.

    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. University Press, Cambridge (2001)

  36. 36.

    Bricmont, J., Kupiainen, A.: Infinite-dimensional SRB measures. Phys. D 103, 18–33 (1997)

  37. 37.

    Nagai, Y., Lai, Y.-C.: Periodic-orbit theory of the blowout bifurcation. Phys. Rev. E 56, 4031 (1997)

  38. 38.

    Viana, R.L., Grebogi, C., Pinto, S.E.S., Lopes, S.R., Batista, A.M., Kurths, J.: Bubbling bifurcations: loss of synchronization and shadowing breakdown in complex systems. Phys. D 206, 94 (2005)

  39. 39.

    Vasconcelos, D.B., Viana, R.L., Lopes, S.R., Batista, A.M., Pinto, S.E.S.: Spatial correlations and synchronization in coupled map lattices with long-range interactions. Phys. A 343, 201 (2004)

  40. 40.

    Viana, R.L., Grebogi, C., Pinto, S.E.S., Lopes, S.R., Batista, A.M., Kurths, J.: Validity of numerical trajectories in the synchronization transition of complex systems. Phys. Rev. E 68, 067204 (2003)

Download references


This work was made possible with the partial financial support of the following Brazilian government agencies: CNPq, CAPES, FAPESP (Grant 2016/16148-5), and Fundação Araucária (State of Paraná).

Author information

Correspondence to R. L. Viana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viana, R.L., Batista, A.M., Batista, C.A.S. et al. Lyapunov spectrum of chaotic maps with a long-range coupling mediated by a diffusing substance. Nonlinear Dyn 87, 1589–1601 (2017). https://doi.org/10.1007/s11071-016-3135-0

Download citation


  • Lyapunov exponents
  • Coupled map lattices
  • Long-range coupling