Nonlinear Dynamics

, Volume 87, Issue 3, pp 1453–1466 | Cite as

On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink

  • Tao Li
  • Sébastien Seguy
  • Alain Berlioz
Original Paper


A periodically forced linear oscillator with impact attachment has been studied. An asymptotical analytical method has been developed to obtain the fixed points and to analyze the transient 1:1 resonance (two impacts per cycle) of the modulated response. The influence of parameters on dynamics has been analyzed around the slow invariant manifold (SIM). Five different response regimes have been observed from theoretical and numerical results. It is demonstrated that they are closely related to the topological structure and relative position of fixed points. The bifurcation, route to chaos and the efficiency of targeted energy transfer (TET) with the variation of different parameters (i.e., amplitude and frequency of excitation, clearance, damping, mass ratio and restitution coefficient) have been investigated and well explained around SIM. Experimental results validate the existence of different regimes and different routes to chaos by the variation of the return map of time difference between consecutive impact moments. TET phenomenon has been analyzed for a strongly modulated response, and different cases of TET have been observed and analyzed. It is clearly observed that TET depends not only on whether there exists 1:1 resonance, but also on impulse strength during the transient resonance capture.


Targeted energy transfer Impact damper Vibro-impact nonlinear energy sink Slow invariant manifold Strongly modulated response Intermittency Chaos 



The authors acknowledge the French Ministry of Science and the Chinese Scholarship Council under Grant No. 201304490063 for their financial support.


  1. 1.
    Frahm, H.: Device for damping vibrations of bodies. US Patent 989,958 (1911)Google Scholar
  2. 2.
    Sun, J.Q., Jolly, M.R., Norris, M.A.: Passive, adaptive and active tuned vibration absorbers—a survey. J. Mech. Des. 117(B), 234–242 (1995)CrossRefGoogle Scholar
  3. 3.
    Roberson, R.E.: Synthesis of a nonlinear dynamic vibration absorber. J. Frankl. Inst. 254(3), 205–220 (1952)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.N.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng. K J. Multibody Dyn. 222(2), 77–134 (2008)Google Scholar
  5. 5.
    Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, vol. 156. Springer Science & Business Media, Berlin (2008)zbMATHGoogle Scholar
  6. 6.
    Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., M’closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I: dynamics of the underlying hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)Google Scholar
  7. 7.
    Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: Part II: resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4), 763–780 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Savadkoohi, A.T., Vaurigaud, B., Lamarque, C.H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks, part II: theory and experiments. Nonlinear Dyn. 67(1), 37–46 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech 79(1), 011012 (2012)CrossRefGoogle Scholar
  11. 11.
    Sigalov, G., Gendelman, O.V., Al-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lamarque, C.H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221(1), 175–200 (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bellet, R., Cochelin, B., Herzog, P., Mattei, P.O.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329(14), 2768–2791 (2010)CrossRefGoogle Scholar
  14. 14.
    Bellet, R., Cochelin, B., Côte, R., Mattei, P.O.: Enhancing the dynamic range of targeted energy transfer in acoustics using several nonlinear membrane absorbers. J. Sound Vib. 331(26), 5657–5668 (2012)Google Scholar
  15. 15.
    Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. D 238(18), 1868–1896 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications, vol. 43. Springer Science & Business Media, Berlin (2009)Google Scholar
  18. 18.
    Babitsky, V.I.: Theory of Vibro-Impact Systems and Applications. Springer Science & Business Media, Berlin (2013)Google Scholar
  19. 19.
    Lieber, P., Jensen, D.P.: An acceleration damper: development, design and some applications. Trans. ASME 67(10), 523–530 (1945)Google Scholar
  20. 20.
    Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Classification principles of types of mechanical systems with impacts—fundamental assumptions and rules. Eur. J. Mech. A Solids 23(3), 517–537 (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    Bapat, C.N., Popplewell, N.: Several similar vibroimpact systems. J. Sound Vib. 113(1), 17–28 (1987)CrossRefGoogle Scholar
  22. 22.
    Masri, S.F., Caughey, T.K.: On the stability of the impact damper. J. Appl. Mech. 33(3), 586–592 (1966)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Popplewell, N., Bapat, C.N., McLachlan, K.: Stable periodic vibroimpacts of an oscillator. J. Sound Vib. 87(1), 41–59 (1983)CrossRefzbMATHGoogle Scholar
  24. 24.
    Bapat, C.N., Popplewell, N., McLachlan, K.: Stable periodic motions of an impact-pair. J. Sound Vib. 87(1), 19–40 (1983)CrossRefzbMATHGoogle Scholar
  25. 25.
    Peterka, F.: More detail view on the dynamics of the impact damper. Mech. Autom. Control Robot. 3(14), 907–920 (2003)zbMATHGoogle Scholar
  26. 26.
    Sung, C.K., Yu, W.S.: Dynamics of a harmonically excited impact damper: bifurcations and chaotic motion. J. Sound Vib. 158(2), 317–329 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yoshitake, Y., Harada, A., Kitayama, S., Kouya, K.: Periodic solutions, bifurcations, chaos and vibration quenching in impact damper. J. Syst. Des. Dyn. 1(1), 39–50 (2007)Google Scholar
  28. 28.
    Peterka, F.: Bifurcations and transition phenomena in an impact oscillator. Chaos Soliton Fractals 7(10), 1635–1647 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bapat, C.N., Sankar, S.: Single unit impact damper in free and forced vibration. J. Sound Vib. 99(1), 85–94 (1985)CrossRefGoogle Scholar
  30. 30.
    Brown, G.V., North, C.M.: The Impact Damped Harmonic Oscillator in Free Decay (1987)Google Scholar
  31. 31.
    Ekwaro-Osire, S., Nieto, E., Gungor, F., Gumus, E., Ertas, A.: Performance of a bi-unit damper using digital image processing. In: Ibrahim, R.A., Babitsky, V.I., Okuma, M. (eds.) Vibro-Impact Dynamics of Ocean Systems and Related Problems, pp. 79–90. Springer, Berlin (2009)Google Scholar
  32. 32.
    Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37(2), 115–128 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331, 4599–4608 (2012)CrossRefGoogle Scholar
  34. 34.
    Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments. J. Vib. Acoust. 137(3), 031008 (2015)CrossRefGoogle Scholar
  35. 35.
    Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)CrossRefGoogle Scholar
  36. 36.
    Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.P.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015)CrossRefGoogle Scholar
  37. 37.
    Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink: analytical, numerical, and experimental analysis. J. Vib. Acoust. 138(3), 031010 (2016)CrossRefGoogle Scholar
  38. 38.
    Pilipchuk, V.N.: Some remarks on non-smooth transformations of space and time for vibrating systems with rigid barriers. J. Appl. Math. Mech-USS 66(1), 31–37 (2002)CrossRefzbMATHGoogle Scholar
  39. 39.
    Pilipchuk, V.N.: Closed-form solutions for oscillators with inelastic impacts. J. Sound Vib. 359, 154–167 (2015)CrossRefGoogle Scholar
  40. 40.
    Starosvetsky, Y., Manevitch, L.I.: Nonstationary regimes in a duffing oscillator subject to biharmonic forcing near a primary resonance. Phys. Rev. E 83(4), 046211 (2011)CrossRefGoogle Scholar
  41. 41.
    Korsch, H.J., Jodl, H.J., Hartmann, T.: Chaos: A Program Collection for the PC. Springer Science & Business Media, Berlin (2007)Google Scholar
  42. 42.
    Bapat, C.N.: The general motion of an inclined impact damper with friction. J. Sound Vib. 184(3), 417–427 (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institut Clément Ader (ICA), CNRS-INSA-ISAE-Mines Albi-UPSUniversité de ToulouseToulouseFrance

Personalised recommendations