Advertisement

Nonlinear Dynamics

, Volume 87, Issue 2, pp 1435–1444 | Cite as

Constructing two powerful methods to solve the Thomas–Fermi equation

  • A. AkgülEmail author
  • M. S. Hashemi
  • M. Inc
  • S. A. Raheem
Original Paper

Abstract

We implement the reproducing kernel method and SL(2, R)-shooting method to solve the Thomas–Fermi equation. Powerful techniques are demonstrated by reproducing kernel functions. The reliable numerical approximations to the solution of this equation are calculated by two novel approaches whose results are in good agreement. Numerical results are shown in order to prove the certainty of the techniques.

Keywords

SL(2, R)-shooting method Group preserving scheme Reproducing kernel method Thomas–Fermi equation 

Notes

Acknowledgments

The authors would like to thank the referees for useful comments and remarks.

References

  1. 1.
    Abbasbandy, S., Hashemi, M.: Group preserving scheme for the Cauchy problem of the Laplace equation. Eng. Anal. Bound. Elem. 35, 1003–1009 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abbasbandy, S., Hashemi, M., Liu, C.S.: The Lie-group shooting method for solving the Bratu equation. Commun. Nonlinear Sci. Numer. Simulat. 16, 4238–4249 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abdul Manaf, N., Ibragimov, G., Abu Bakar, M.R.: Utilization of reproducing kernel Hilbert space method on the survival data of leukemia patients. Int. J. Appl. Math. Stat. 53(6), 167–172 (2015)MathSciNetGoogle Scholar
  4. 4.
    Akgül, A., Kilicman, A.: Solving delay differential equations by an accurate method with interpolation. Abstract and Applied Analysis, vol. 2014, p. 7Google Scholar
  5. 5.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Azarnavid, B., Parvaneh, F., Abbasbandy, S.: Picard-reproducing kernel Hilbert space method for solving generalized singular nonlinear Lane–Emden type equations. Math. Model. Anal. 20(6), 754–767 (2015). doi: 10.3846/13926292.2015.1111953 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bergman, S.: The Kernel Function and Conformal Mapping. American Mathematical Society, New York (1950)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dyn. 84(3), 1553–1567 (2016). doi: 10.1007/s11071-015-2588-x MathSciNetCrossRefGoogle Scholar
  9. 9.
    Biswas, A., Kara, A.H., Moraru, L., Bokhari, A.H., Zaman, F.D.: Conservation laws of coupled Klein–Gordon equations with cubic and power law nonlinearities. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 15(2), 123–129 (2014)MathSciNetGoogle Scholar
  10. 10.
    Budd, C., Iserles, A.: Geometric integration: numerical solution of differential equations on manifolds. Philos. Trans. R. Soc. Lond. A 357, 945–956 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science Publishers Inc, New York (2009)zbMATHGoogle Scholar
  12. 12.
    Du, H., Cui, M.: A method of solving nonlinear mixed Volterra–Fredholm integral equation. Appl. Math. Sci. (Ruse) 1(49–52), 2505–2516 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Du, J., Cui, M.: Solving the forced Duffing equation with integral boundary conditions in the reproducing kernel space. Int. J. Comput. Math. 87(9), 2088–2100 (2010). doi: 10.1080/00207160802610843 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ebadi, G., Krishnan, E.V., Labidi, M., Zerrad, E., Biswas, A.: Analytical and numerical solutions to the Davey–Stewartson equation with power-law nonlinearity. Waves Random Complex 21(4), 559–590 (2011). doi: 10.1080/17455030.2011.606853 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Eslami, M.: Solitary wave solutions for perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity under the DAM. Optik 126(13), 1312–1317 (2015)CrossRefGoogle Scholar
  16. 16.
    Eslami, M.: Soliton-like solutions for the coupled Schrödinger–Boussinesq equation. Optik 126(23), 3987–3991 (2015)CrossRefGoogle Scholar
  17. 17.
    Eslami, M., Neirameh, A.: New solitary and double periodic wave solutions for a generalized sinh-Gordon equation. Eur. Phys. J. Plus 129, 54 (2014)CrossRefGoogle Scholar
  18. 18.
    Eslami, M., Mirzazadeh, M.: Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83, 731–738 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Eslami, M., Mirzazadeh, M., Vajargah, B., Biswas, A.: Optical solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients by the first integral method. Optik 125(13), 3107–3116 (2014)CrossRefGoogle Scholar
  20. 20.
    Eslami, M., Mirzazadeh, M., Neirameh, A.: New exact wave solutions for Hirota equation. Pramana J. Phys. 84, 3–8 (2015)CrossRefGoogle Scholar
  21. 21.
    Fardi, M., Khoshsiar Ghaziani, R.: The reproducing Kernel method for some variational problems depending on indefinite integrals. Math. Model. Anal. 21(3), 412–429 (2016). doi: 10.3846/13926292.2016.1178185 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Geng, F., Cui, M.: Solving singular nonlinear second-order periodic boundary value problems in the reproducing kernel space. Appl. Math. Comput. 192(2), 389–398 (2007). doi: 10.1016/j.amc.2007.03.016 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Geng, F., Cui, M.: New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions. J. Comput. Appl. Math. 233(2), 165–172 (2009). doi: 10.1016/j.cam.2009.07.007 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Girgis, L., Biswas, A.: A study of solitary waves by He’s semi-inverse variational principle. Waves Random Complex 21(1), 96–104 (2011). doi: 10.1080/17455030.2010.519128 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Griebel, M., Rieger, C., Zwicknagl, B.: Multiscale approximation and reproducing kernel Hilbert space methods. SIAM J. Numer. Anal. 53(2), 852–873 (2015). doi: 10.1137/130932144 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hairer, E.: Geometric integration of ordinary differential equations on manifolds. BIT 41, 996–1007 (2001)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hashemi, M.: Constructing a new geometric numerical integration method to the nonlinear heat transfer equations. Commun. Nonlinear Sci. Numer. Simulat. 22, 990–1001 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hashemi, M., Baleanu, D.: Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line. J. Comput. Phys. 316, 10–20 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hashemi, M., Nucci, M., Abbasbandy, S.: Group analysis of the modified generalized Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simulat. 18(4), 867–877 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hashemi, M., Haji-Badali, A., Vafadar, P.: Group invariant solutions and conservation laws of the Fornberg–Whitham equation. Z. Naturforsch. A 68, 489–496 (2014)Google Scholar
  31. 31.
    Hashemi, M., Darvishi, E., Baleanu, D.: A geometric approach for solving the density-dependent diffusion Nagumo equation. Adv. Differ. Equ. 2016, 1–13 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hashemi, M., Inc, M., Kilic, B., Akgül, A.: On solitons and invariant solutions of the Magneto-electro-elastic circular rod. Waves Random Complex 26(3), 259–271 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Inc, M., Akgül, A., Kiliçman, A.: Explicit solution of telegraph equation based on reproducing kernel method. J. Funct. Spaces Appl. 23 (2012)Google Scholar
  34. 34.
    Iserles, A., Munthe-Kaas, H., Nrsett, P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kumar, S., Hama, A., Biswas, A.: Solutions of Konopelchenko–Dubrovsky equation by traveling wave hypothesis and Lie symmetry approach. Appl. Math. Inf. Sci. 8(4), 1533–1539 (2014). doi: 10.12785/amis/080406 MathSciNetCrossRefGoogle Scholar
  36. 36.
    Liu, C.S.: Cone of non-linear dynamical system and group preserving schemes. Int. J. Nonlinear Mech. 36, 1047–1068 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Liu, C.S.: Computing the eigenvalues of the generalized Sturm Liouville problems based on the Lie-group \(SL(2, R)\). J. Comput. Appl. Math. 236, 4547–4560 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Liu, C.S.: An \(SL(3, R)\) shooting method for solving the Falkner–Skan boundary layer equation. Int. J. Nonlinear Mech. 49, 145–151 (2013)CrossRefGoogle Scholar
  39. 39.
    Liu, C.S.: Developing an \(SL(2, R)\) Lie-group shooting method for a singular \(\phi \)-Laplacian in a nonlinear ODE. Commun. Nonlinear Sci. Numer. Simulat. 18, 2327–2339 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lv, X., Cui, M.: An efficient computational method for linear fifth-order two-point boundary value problems. J. Comput. Appl. Math. 234(5), 1551–1558 (2010). doi: 10.1016/j.cam.2010.02.036 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Mercer, J.: Function of positive and negative type and their connection with the theory of integral equation. Philos. Trans. R. Soc. Lond. Ser. 209, 415–446 (1909)CrossRefzbMATHGoogle Scholar
  42. 42.
    Mirzazadeh, M., Eslami, M., Biswas, A.: Soliton solutions of the generalized Klein–Gordon equation by using \(\frac{G^{\prime }}{G}\)-expansion method. Comput. Appl. Math. 33(3), 831–839 (2014)Google Scholar
  43. 43.
    Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and periodic solutions to a couple of fractional nonlinear evolution equations. Pramana J. Phys. 82(3), 465–476 (2014)CrossRefGoogle Scholar
  44. 44.
    Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80, 387–396 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Nazarzadeh, A., Eslami, M., Mirzazadeh, M.: Exact solutions of some nonlinear partial differential equations using functional variable method. Pramana J. Phys. 81(2), 225–236 (2013)CrossRefGoogle Scholar
  46. 46.
    Tang, Z.Q., Geng, F.Z.: Fitted reproducing kernel method for singularly perturbed delay initial value problems. Appl. Math. Comput. 284, 169–174 (2016). doi: 10.1016/j.amc.2016.03.006 MathSciNetGoogle Scholar
  47. 47.
    Wang, Yl, Chao, L.: Using reproducing kernel for solving a class of partial differential equation with variable-coefficients. Appl. Math. Mech. (English Ed.) 29(1), 129–137 (2008). doi: 10.1007/s10483-008-0115-y MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Wang, Y., Chaolu, T., Chen, Z.: Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems. Int. J. Comput. Math. 87(1–3), 367–380 (2010). doi: 10.1080/00207160802047640 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Wang, G., Kara, A.H., Fakhar, K., Vega-Guzman, J., Biswas, A.: Group analysis, exact solutions and conservation laws of a generalized fifth order KdV equation. Chaos Solitons Fractals 86, 8–15 (2016). doi: 10.1016/j.chaos.2016.02.013 MathSciNetCrossRefGoogle Scholar
  50. 50.
    Wu, B., Li, X.: Iterative reproducing kernel method for nonlinear oscillator with discontinuity. Appl. Math. Lett. 23(10), 1301–1304 (2010). doi: 10.1016/j.aml.2010.06.018 MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Xu, M.Q., Lin, Y.Z.: Simplified reproducing kernel method for fractional differential equations with delay. Appl. Math. Lett. 52, 156–161 (2016). doi: 10.1016/j.aml.2015.09.004 MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Yao, H., Lin, Y.: Solving singular boundary-value problems of higher even-order. J. Comput. Appl. Math. 223(2), 703–713 (2009). doi: 10.1016/j.cam.2008.02.010 MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Zaremba, S.: Sur le calcul numérique des fonctions demandées dan le probléme de dirichlet et le probleme hydrodynamique. Bulletin International l’Académia des Sciences de Cracovie 68, 125–195 (1908)Google Scholar
  54. 54.
    Zhang, Z.Q., Zhou, J.X., Wang, X.M., Zhang, Y.F., Zhang, L.: \(h\)-Adaptivity analysis based on multiple scale reproducing kernel particle method. Appl. Math. Mech. 26(8), 972–978 (2005)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Zhou, Y., Lin, Y., Cui, M.: An efficient computational method for second order boundary value problems of nonlinear differential equations. Appl. Math. Comput. 194(2), 354–365 (2007). doi: 10.1016/j.amc.2007.04.029 MathSciNetzbMATHGoogle Scholar
  56. 56.
    Zhu, S., Zhu, H., Wu, Q., Khan, Y.: An adaptive algorithm for the Thomas–Fermi equation. Numer. Algorithms 59(3), 359–372 (2012). doi: 10.1007/s11075-011-9494-1 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Art and Science FacultySiirt UniversitySiirtTurkey
  2. 2.Department of Mathematics, Basic Science FacultyUniversity of BonabBonabIran
  3. 3.Department of Mathematics, Science FacultyFirat UniversityElazigTurkey

Personalised recommendations