Nonlinear Dynamics

, Volume 87, Issue 1, pp 37–49 | Cite as

Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator

  • S. Sabarathinam
  • Christos K. Volos
  • K. Thamilmaran
Original Paper


An electronic model of Duffing oscillator with a characteristic memristive nonlinear element is proposed instead of the classical cubic nonlinearity. The memristive Duffing oscillator circuit system is mathematically modeled, and the stability analysis presents the evolution of the proposed system. The dynamical behavior of this circuit is investigated through numerical simulations, statistical analysis, and real-time hardware experiments, which have been carried out under the external periodic force. The chaotic dynamics of the circuit is studied by means of phase diagram. It is found that the proposed circuit system shows complex behaviors, like bifurcations and chaos, three tori, transient chaos, and intermittency for a certain range of circuit parameters. The observed phenomena and scenario are illustrated in detail through experimental and numerical studies of memristive Duffing oscillator circuit. The existence of regular and chaotic behaviors is also verified by using 0–1 test measurements. In addition, the robustness of the signal strength is confirmed through signal-to-noise ratio. The numerically observed results are confirmed from the laboratory experiment.


Memristor Memristor Duffing oscillator Experimental evidence of transient chaos Three tori 



S.S. acknowledges University Grants Commission (UGC) for the financial assistance through RFSMS scheme. K.T. acknowledges DST, Govt. of India, for the financial support through the Grant No. SB/EMEQ-077/2013.


  1. 1.
    Ho, Y., Huang, G.M., Li, P.: “Nonvolatile memristor memory: device characteristics and design implications, In: Computer-Aided Design-Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on (IEEE, 2009) pp. 485–490Google Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: “The missing memristor found”. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  3. 3.
    Pershin, Y.V., La Fontaine, S., Di Ventra, M.: “Memristive model of amoeba learning”. Phys. Rev. E 80, 021926 (2009)CrossRefGoogle Scholar
  4. 4.
    Pershin, Y.V., Di Ventra, M.: “Spin memristive systems: spin memory effects in semiconductor spintronics”. Phys. Rev. B 78, 113309 (2008)CrossRefGoogle Scholar
  5. 5.
    Pershin, Y.V., Ventra, D.: “Frequency doubling and memory effects in the spin Hall effect”. Phys. Rev. B 79, 153307 (2009)CrossRefGoogle Scholar
  6. 6.
    Tour, J.M., He, T.: “Electronics: the fourth element”. Nature 453, 42–43 (2008)CrossRefGoogle Scholar
  7. 7.
    Mohanty, S.P.: Memristor: from basics to deployment. Potentials IEEE 32, 34–39 (2013)CrossRefGoogle Scholar
  8. 8.
    Chua, L.O.: Memristor-the missing circuit element. Circuit Theory IEEE Trans. 18, 507–519 (1971)CrossRefGoogle Scholar
  9. 9.
    Wang, D., Hu, Z., Yu, X., Yu, J.: “A pwl model of memristor and its application example”, In: Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on (IEEE, 2009) pp. 932–934Google Scholar
  10. 10.
    Corinto, F., Ascoli, A., Gilli, M.: “Nonlinear dynamics of memristor oscillators”. Circuits Syst. I Regul. Pap. IEEE Trans. 58, 1323–1336 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Teng, L., Iu, H.H.C., Wang, X., Wang, X.: “Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial”. Nonlinear Dyn. 77, 231–241 (2014)CrossRefGoogle Scholar
  12. 12.
    Wu, H., Bao, B., Liu, Z., Xu, Q., Jiang, P.: “Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator”. Nonlinear Dyn. 83, 893–903 (2016)Google Scholar
  13. 13.
    Cafagna, D., Grassi, G.: “On the simplest fractional-order memristor-based chaotic system”. Nonlinear Dyn. 70, 1185–1197 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Muthuswamy, B., Kokate, P.P.: Memristor-based chaotic circuits. IETE Tech. Rev. 26, 417–429 (2009)CrossRefGoogle Scholar
  16. 16.
    Radwan, A.G., Zidan, M.A., Salama, K.N.: “Hp memristor mathematical model for periodic signals and dc”, In: Circuits and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on (IEEE, 2010) pp. 861–864Google Scholar
  17. 17.
    Prodromakis, T., Peh, B.P., Papavassiliou, C., Toumazou, C.: “A versatile memristor model with nonlinear dopant kinetics”. Electron Devices IEEE Trans. 58, 3099–3105 (2011)CrossRefGoogle Scholar
  18. 18.
    Ahamed, A.I., Lakshmanan, M.: “Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Lakshmanan-Chua circuit”. Int. J. Bifurc. Chaos 23, 1350098 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, M., Yu, J., Yu, Q., Li, C., Bao, B.: “A memristive diode bridge-based canonical Chua’s circuit”. Entropy 16, 6464–6476 (2014)CrossRefGoogle Scholar
  20. 20.
    Bo-Cheng, B., Jian-Ping, X., Guo-Hua, Z., Zheng-Hua, M., Ling, Z.: “Chaotic memristive circuit: equivalent circuit realization and dynamical analysis”. Chin. Phys. B 20, 120502 (2011)CrossRefGoogle Scholar
  21. 21.
    Talukdar, A.H.: Nonlinear dynamics of memristor based 2nd and 3rd order oscillators, Ph.D. thesis (2011)Google Scholar
  22. 22.
    Bo-Cheng, B., Jian-Ping, X., Zhong, L.: Initial state dependent dynamical behaviors in a memristor based chaotic circuit. Ł 27, 70504–070504 (2010)Google Scholar
  23. 23.
    Chua, L.: Resistance switching memories are memristors. Appl. Phys. A. 102, 765–783 (2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D.A.A., Wu, W., Stewart, D.R., Williams, R.S.: “A hybrid nanomemristor/transistor logic circuit capable of self-programming”. Proc. Natl. Acad. Sci. 106, 1699–1703 (2009)CrossRefGoogle Scholar
  25. 25.
    Xu, C., Dong, X., Jouppi, N.P., Xie, Y.: “Design implications of memristor-based RRAM cross-point structures”, In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011 (IEEE, 2011) pp. 1–6Google Scholar
  26. 26.
    Mouttet, B.: “Proposal for memristors in signal processing”, In: Nano-Net (Springer) pp. 11–13 (2009)Google Scholar
  27. 27.
    Thomas, A.: Memristor-based neural networks. J. Phys. D Appl. Phys. 46, 093001 (2013)CrossRefGoogle Scholar
  28. 28.
    Rajendran, J., Manem, H., Karri, R., Rose, G.S.: “Memristor based programmable threshold logic array”, In: Proceedings of the 2010 IEEE/ACM International Symposium on Nanoscale Architectures (IEEE Press, 2010) pp. 5–10Google Scholar
  29. 29.
    Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W.: A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2011)CrossRefGoogle Scholar
  30. 30.
    Itoh, M., Chua, L.O.: “Memristor oscillators”. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhang, G., Hu, J., Shen, Y.: “New results on synchronization control of delayed memristive neural networks”. Nonlinear Dyn. 81, 1167–1178 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhang, G., Shen, Y.: “Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control”. Neural Netw. 55, 1–10 (2014)CrossRefzbMATHGoogle Scholar
  33. 33.
    Podhaisky, H., Marszalek, W.: “Bifurcations and synchronization of singularly perturbed oscillators: an application case study”. Nonlinear Dyn. 69, 949–959 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Marszalek, W., Podhaisky, H.: “2d bifurcations and Newtonian properties of memristive Chua’s circuits”. EPL 113, 10005 (2016)CrossRefGoogle Scholar
  35. 35.
    Megam Ngouonkadi, E.B., Fotsin, H.B., Fotso, P.L.: “Implementing a memristive van der pol oscillator coupled to a linear oscillator: synchronization and application to secure communication”. Phys. Scr. 89, 035201 (2014)CrossRefGoogle Scholar
  36. 36.
    George, D.: “Erzwungene schwingung bei vernderlicher eigenfrequenz und ihre technische bedeutung”, Vieweg (1918)Google Scholar
  37. 37.
    Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Wiley, UK (2011)CrossRefzbMATHGoogle Scholar
  38. 38.
    Linsay, P.S.: Period doubling and chaotic behavior in a driven anharmonic oscillator. Phys. Rev. Lett. 47, 1349 (1981)CrossRefGoogle Scholar
  39. 39.
    Sabarathinam, S., Thamilmaran, K.: Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators. Chaos Solitons Fractals 73, 129–140 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Bao, B., Jiang, P., Wu, H., Hu, F.: “Complex transient dynamics in periodically forced memristive chuas circuit”. Nonlinear Dyn. 79, 2333–2343 (2014)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wu, W., Chen, Z., Yuan, Z.: “The evolution of a novel four-dimensional autonomous system: among 3-torus, limit cycle, 2-torus, chaos and hyperchaos”. Chaos Solitons Fractals 39, 2340–2356 (2009)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Prasad, A., Mehra, V., Ramaswamy, R.: “Intermittency route to strange nonchaotic attractors”. Phys. Rev. Lett. 79, 4127 (1997)CrossRefGoogle Scholar
  43. 43.
    Lakshmanan, M., Rajaseekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, Berlin (2012)Google Scholar
  44. 44.
    Johnson, D.H.: “Signal-to-noise ratio”. 1,2088, revision 91770 (2006)Google Scholar
  45. 45.
    Gottwald, G.A., Melbourne, I.: “On the implementation of the 0–1 test for chaos”. SIAM J. Appl. Dyn. Syst. 8, 129–145 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Falconer, I., Gottwald, G.A., Melbourne, I., Wormnes, K.: “Application of the 0–1 test for chaos to experimental data”. SIAM J. Appl. Dyn. Syst. 6, 395–402 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Lai, Y.-C., Tél, T.: Transient Chaos: Complex Dynamics on Finite Time Scales, vol. 173. Springer, Berlin (2011)zbMATHGoogle Scholar
  48. 48.
    Lai, Y.-C., Winslow, R.L.: “Geometric properties of the chaotic saddle responsible for supertransients in spatiotemporal chaotic systems”. Phys. Rev. Lett. 74, 5208 (1995)CrossRefGoogle Scholar
  49. 49.
    Bleher, S., Grebogi, C., Ott, E.: “Bifurcation to chaotic scattering”. Phys. D Nonlinear Phenom. 46, 87–121 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Jung, C., Tél, T., Ziemniak, E.: “Application of scattering chaos to particle transport in a hydrodynamical flow”. Chaos Interdiscip. J. Nonlinear Sci. 3, 555–568 (1993)CrossRefGoogle Scholar
  51. 51.
    Dhamala, M., Lai, Y.-C.: “Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology”. Phys. Rev. E 59, 1646 (1999)CrossRefGoogle Scholar
  52. 52.
    Tél, T., Lai, Y.-C.: “Chaotic transients in spatially extended systems”. Phys. Rep. 460, 245–275 (2008)Google Scholar
  53. 53.
    Bo-Cheng, B., Zhong, L., Jian-Ping, X.: “Transient chaos in smooth memristor oscillator”. Chin. Phys. B 19, 030510 (2010)CrossRefGoogle Scholar
  54. 54.
    Mukouyama, Y., Kawasaki, H., Hara, D., Nakanishi, S.: “Transient chaotic behavior during simultaneous occurrence of two electrochemical oscillations”. J. Solid State Electrochem. 19, 3253–3263 (2015)Google Scholar
  55. 55.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: “Phase synchronization of chaotic oscillators”. Phys. Rev. Lett. 76, 1804 (1996)CrossRefzbMATHGoogle Scholar
  56. 56.
    Manneville, P., Pomeau, Y.: “Intermittency and the Lorenz model”. Phys. Lett. A 75, 1–2 (1979)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • S. Sabarathinam
    • 1
  • Christos K. Volos
    • 2
  • K. Thamilmaran
    • 1
  1. 1.Centre for Nonlinear DynamicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations