Advertisement

Nonlinear Dynamics

, Volume 86, Issue 3, pp 1711–1723 | Cite as

Coexisting infinitely many attractors in active band-pass filter-based memristive circuit

  • Bocheng Bao
  • Tao Jiang
  • Quan Xu
  • Mo Chen
  • Huagan Wu
  • Yihua HuEmail author
Original Paper

Abstract

This paper presents an inductor-free memristive circuit, which is implemented by linearly coupling an active band-pass filter (BPF) with a parallel memristor and capacitor filter. Mathematical model is established, and numerical simulations are performed. The results verified by hardware experiments show that the active BPF-based memristive circuit exhibits the dynamical behaviors of point, period, chaos, and period-doubling bifurcation route. Most important of all, the newly proposed memristive circuit has a line equilibrium and its stability closely relies on memristor initial condition, which results in the emergence of extreme multistability. Stability distribution related to memristor initial condition is numerically estimated and the coexistence of infinitely many attractors is intuitively captured by numerical simulations and PSIM circuit simulations.

Keywords

Memristive circuit Active band-pass filter Memristor initial condition Infinitely many attractor Extreme multistability 

Notes

Acknowledgments

This work was supported by the grants from the National Natural Science Foundations of China (Grant No. 51277017), the Scientific Research Foundation of Jiangsu Provincial Education Department, China under Grant Nos. 14JKB430004 and 15KJB510001, and the Natural Science Foundations of Changzhou, Jiangsu Province, China (Grant No. CJ20159026).

References

  1. 1.
    Chua, L.O.: The fourth element. Proc. IEEE 100, 1920–1927 (2012)CrossRefGoogle Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  3. 3.
    Li, Q.D., Zeng, H.Z., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ma, J., Chen, Z.G., Wang, Z.L., Zhang, Q.: A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonlinear Dyn. 81, 1275–1288 (2015)CrossRefGoogle Scholar
  5. 5.
    Itoh, M., Chua, L.O.: Duality of memristor circuits. Int. J. Bifurcat. Chaos 23, 1330001 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Petráš, I.: Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II Express Briefs 57, 975–979 (2010)CrossRefGoogle Scholar
  7. 7.
    Bao, B.C., Hu, F.W., Liu, Z., Xu, J.P.: Mapping equivalent approach to analysis and realization of memristor-based dynamical circuit. Chin. Phys. B 23, 070503 (2014)CrossRefGoogle Scholar
  8. 8.
    Wang, G.Y., He, J.L., Yuan, F., Peng, C.J.: Dynamical behaviors of a TiO\(_{2}\) memristor oscillator. Chin. Phys. Lett. 30, 110506 (2013)CrossRefGoogle Scholar
  9. 9.
    Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on Hewlett-Packard memristor. Chaos 22, 023136 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fitch, A.L., Yu, D., Iu, H.H., Sreeram, V.: Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurcat. Chaos 22, 1250133 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Zhou, L., Wang, C.H., Zhou, L.L.: Generating hyperchaotic multi-wing attractor in a 4D memristive circuit. Nonlinear Dyn. (2016). doi: 10.1007/s11071-016-2852-8
  12. 12.
    Kengne, J., Tabekoueng, Z.N., Tamba, V.K., Negou, A.N.: Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos 25, 103126 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Xu, Q., Lin, Y., Bao, B.C., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83, 186–200 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, M., Li, M.Y., Yu, Q., Bao, B.C., Xu, Q., Wang, J.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81, 215–226 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, M., Yu, J.J., Bao, B.C.: Finding hidden attractors in an improved memristor based Chua’s circuit. Electron. Lett. 51, 462–464 (2015)CrossRefGoogle Scholar
  16. 16.
    Pham, V.T., Volos, C.K., Vaidyanathan, S., Le, T.P., Yu, V.Y.: A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J. Eng. Sci. Technol. Rev. 8, 205–214 (2015)Google Scholar
  17. 17.
    Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C.K., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Tech. Sci. 59, 358–363 (2016)CrossRefGoogle Scholar
  18. 18.
    Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviors. Electron. Lett. 46, 228–230 (2010)CrossRefGoogle Scholar
  19. 19.
    Bao, B.C., Ma, Z.H., Xu, J.P., Liu, Z., Xu, Q.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurcat. Chaos 21, 2629–2645 (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ahamed, A.I., Lakshmanan, M.: Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Lakshmanan-Chua circuit. Int. J. Bifurcat. Chaos 23, 1350098 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bao, B.C., Jiang, P., Wu, H.G., Hu, F.W.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79, 2333–2343 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wu, H.G., Bao, B.C., Liu, Z., Xu, Q., Jiang, P.: Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lü, M., Wang, C.N., Tang, J., Ma, J.: Collapse of synchronization in a memristive network. Commun. Theor. Phys. 64, 659–664 (2015)CrossRefzbMATHGoogle Scholar
  24. 24.
    Bao, B.C., Xu, J.P., Zhou, G.H., Ma, Z.H., Zou, L.: Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20, 120502 (2011)CrossRefGoogle Scholar
  25. 25.
    Bao, B.C., Xu, J.P., Liu, Z.: Initial state dependent dynamical behaviours in memristor based chaotic circuit. Chin. Phys. Lett. 27, 070504 (2010)CrossRefGoogle Scholar
  26. 26.
    Bao, B.C., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52, 1008–1010 (2016)Google Scholar
  27. 27.
    Patel, M.S., Patel, U., Sen, A., Sethia, G.C., Hens, C., Dana, S.K., Feudel, U., Showalter, K., Ngonghala, C.N., Amritkar, R.E.: Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. Phys. Rev. E 89, 022918 (2014)Google Scholar
  28. 28.
    Hens, C., Dana, S.K., Feudel, U.: Extreme multistability: attractors manipulation and robustness. Chaos 25, 053112 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Li, C.B., Sprott, J.C.: Multistability in the Lorenz system: a broken butterfly. Int. J. Bifurcat. Chaos 24, 1450131 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kengne, J.: Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurcat. Chaos 25, 1550052 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sprott, J.C., Wang, X., Chen, G.R.: Coexistence of point, periodic and strange attractors. Int. J. Bifurcat. Chaos 23, 1350093 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., Stankevich, N.V.: Co-existing hidden attractors in a radio-physical system. J. Phys. A 48, 125101 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Bao, B.C., Li, Q.D., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26, 043111 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Li, C.B., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224, 1493–1506 (2015)CrossRefGoogle Scholar
  36. 36.
    Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224, 1485–1491 (2015)Google Scholar
  37. 37.
    Morfu, S., Nofiele, B., Marquié, P.: On the use of multistability for image processing. Phys. Lett. A 367, 192–198 (2007)CrossRefzbMATHGoogle Scholar
  38. 38.
    Sun, H., Scott, S.K., Showalter, K.: Uncertain destination dynamics. Phys. Rev. E 60, 3876–3880 (1999)CrossRefGoogle Scholar
  39. 39.
    Bao, B.C., Shi, G.D., Xu, J.P., Liu, Z., Pan, S.H.: Dynamics analysis of chaotic circuit with two memristors. Sci. China Tech. Sci. 54, 2180–2187 (2011)CrossRefzbMATHGoogle Scholar
  40. 40.
    Bao, B.C., Zhou, X., Liu, Z., Hu, F.W.: Generalized memory element and chaotic memory system. Int. J. Bifurcat. Chaos 23, 1350135 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Banerjee, T.: Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dyn. 68, 565–573 (2012)CrossRefGoogle Scholar
  42. 42.
    Banerjee, T., Karmakar, B., Sarkar, B.C.: Single amplifier biquad based autonomous electronic oscillators for chaos generation. Nonlinear Dyn. 62, 859–866 (2010)CrossRefzbMATHGoogle Scholar
  43. 43.
    Bao, B.C., Wang, N., Chen, M., Xu, Q., Wang, J.: Inductor-free simplified Chua’s circuit only using two op-amps based realization. Nonlinear Dyn. 84, 511–525 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurcat. Chaos 20, 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  45. 45.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolBrownlow HillUK
  2. 2.School of Information Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations