Advertisement

Nonlinear Dynamics

, Volume 86, Issue 3, pp 1571–1597 | Cite as

Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance

Original Paper

Abstract

The nonlinear dynamics of a flexible multibody system with interval clearance size in a revolute joint is investigated in this work. The system is modeled by using a unified mesh of absolute nodal coordinate formulation (ANCF), that is, the flexible parts are meshed via the finite elements of the ANCF and the rigid parts are described via the ANCF reference nodes (ANCF-RNs). The kinetic models of all revolute joints are formulated by using ANCF reference node (ANCF-RN) coordinates. The influence of the Lund-Grenoble and the modified Coulomb’s friction models on the system dynamics is comparatively studied. The Chebyshev tensor product sampling method is used to generate the samples of the interval clearance size. With the purpose to maintain the continuous contact of the clearance joint, a modified extended delayed feedback control (EDFC) is used to stabilize the chaotic motion of the flexible multibody system. Finally, the dynamics of a planar slider–crank mechanism with interval clearance size in a revolute joint is studied, as a benchmark example, to check the effectiveness of the presented computation method and the modified EDFC.

Keywords

Revolute clearance joint Slider–crank mechanism Absolute nodal coordinate formulation (ANCF) ANCF reference node (ANCF-RN) Interval parameter Extended delayed feedback control (EDFC) 

Notes

Acknowledgments

This research was supported in part by National Natural Science Foundation of China under Grants 11290151 and 11472042. The work was also supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941. Finally, the authors are much indebted to the anonymous reviewers for useful comments, recommendations and suggestions.

References

  1. 1.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Lecture Notes in Applied and Computational Mechanics, vol. 34. Springer, Berlin (2008)MATHGoogle Scholar
  2. 2.
    Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004)CrossRefGoogle Scholar
  3. 3.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1(3), 240–247 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Spatial revolute joints with clearances for dynamic analysis of multibody systems. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 220(4), 257–271 (2006)Google Scholar
  5. 5.
    Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41(3), 247–261 (2006)MATHCrossRefGoogle Scholar
  7. 7.
    Flores, P., Ambróio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody system. Nonlinear Dyn. 56, 277–295 (2009)MATHCrossRefGoogle Scholar
  8. 8.
    Flores, P., Lankarani, H.M.: Spatial rigid-multi-body systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60, 99–114 (2010)MATHCrossRefGoogle Scholar
  9. 9.
    Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2(1), 1–24 (1998)MATHCrossRefGoogle Scholar
  10. 10.
    Dubowsky, S.: On predicting the dynamic effects of clearances in planar mechanisms. J. Eng. Ind. 96(1), 317–323 (1974)CrossRefGoogle Scholar
  11. 11.
    Erkaya, S., Uzmay, I.: Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn. 58, 179–198 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    Erkaya, S., Uzmay, I.: Determining link parameters using genetic algorithm in mechanisms with joint clearance. Mech. Mach. Theory 44, 222–234 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Erkaya, S.: Prediction of vibration characteristics of a planar mechanism having imperfect joints using neural network. J. Mech. Sci. Technol. 26(5), 1419–1430 (2012)CrossRefGoogle Scholar
  14. 14.
    Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multibody systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53, 30–49 (2012)CrossRefGoogle Scholar
  15. 15.
    Brutti, C., Coglitore, G., Valentini, P.P.: Modeling 3D revolute joint with clearance and contact stiffness. Nonlinear Dyn. 66(4), 531–548 (2011)CrossRefGoogle Scholar
  16. 16.
    Orden, J.C.G.: Analysis of joint clearances in multibody systems. Multibody Syst. Dyn. 13(4), 401–420 (2005)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Pezzuti, E., Stefanelli, R., Valentini, P.P., Vita, L.: Computer-aided simulation and testing of spatial linkages with joint mechanical errors. Int. J. Numer. Methods Eng. 65(11), 1735–1748 (2006)MATHCrossRefGoogle Scholar
  18. 18.
    Valentini, P., Stefanelli, R., Vita, L.: Modelling hydrodynamic journal bearing in 3D multibody systems. In: Proceedings of ASME-IDETC/CIE 2005, Long Beach, California, USA, pp. 24–28 (2005)Google Scholar
  19. 19.
    Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)MATHCrossRefGoogle Scholar
  20. 20.
    Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody system. Nonlinear Dyn. 64, 25–47 (2011)MATHCrossRefGoogle Scholar
  21. 21.
    Tian, Q., Sun, Y., Liu, C., Hu, H., Flores, P.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114, 106–120 (2013)CrossRefGoogle Scholar
  22. 22.
    Shabana, A.A.: An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies. Technical Report. No. MBS96-1-UIC, University of Illinois at Chicago (1996)Google Scholar
  23. 23.
    Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 219, 345–355 (2005)Google Scholar
  24. 24.
    Mikkola, A.M., Shabana, A.A., Sanchez-Rebollo, C., Jimenez-Octavio, J.R.: Comparison between ANCF and B-spline surfaces. Multibody Syst. Dyn. 30(2), 119–138 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plate. Multibody Syst. Dyn. 26(3), 283–305 (2011)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61, 193–206 (2010)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Shabana, A.A.: Flexible multibody dynamics review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Zhu, J., Ting, K.L.: Uncertainty analysis of planar and spatial robots with joint clearances. Mech. Mach. Theory 35, 1239–1256 (2000)CrossRefGoogle Scholar
  30. 30.
    Parenti-Castelli, V., Venanzi, S.: Clearance influence analysis on mechanisms. Mech. Mach. Theory 40, 1316–1329 (2005)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Wu, W., Rao, S.S.: Uncertainty analysis and allocation of joint tolerances in robot manipulators based on interval analysis. Reliab. Eng. Syst. Saf. 92, 54–64 (2007)CrossRefGoogle Scholar
  32. 32.
    Chen, G., Wang, H., Lin, Z.: A unified approach to the accuracy analysis of planar parallel manipulators both with input uncertainties and joint clearance. Mech. Mach. Theory 64, 1–17 (2013)CrossRefGoogle Scholar
  33. 33.
    Kumaraswamy, U., Shunmugam, M.S., Sujatha, S.: A unified framework for tolerance analysis of planar and spatial mechanisms using screw theory. Mech. Mach. Theory 69(6), 168–184 (2013)CrossRefGoogle Scholar
  34. 34.
    Li, X., Ding, X., Chirikjian, G.S.: Analysis of angular-error uncertainty in planar multiple-loop structures with joint clearances. Mech. Mach. Theory 91, 69–85 (2015)CrossRefGoogle Scholar
  35. 35.
    Muvengei, M., Kihiu, J., Ikua, B.: Effects of clearance size on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. J. Energy Technol. Policy 74, 954 (2012)Google Scholar
  36. 36.
    Flores, P.: Dynamic analysis of mechanical systems with imperfect kinematic joints. Dissertation, University of Minho, Guimarães (2004)Google Scholar
  37. 37.
    Rahmanian, S., Ghazavi, M.R.: Bifurcation in planar slider–crank mechanism with revolute clearance joint. Mech. Mach. Theory 91, 86–101 (2015)CrossRefGoogle Scholar
  38. 38.
    Olyaei, A.A., Ghazavi, M.R.: Stabilizing slider–crank mechanism with clearance joints. Mech. Mach. Theory 53, 17–29 (2012)CrossRefGoogle Scholar
  39. 39.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)MATHGoogle Scholar
  40. 40.
    Alefeld, G.: Interval analysis: theory and applications. J. Comput. Appl. Math. 121, 421–464 (2000)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Jackson, K.R., Nedialkov, N.S.: Some recent advances in validated methods for IVPs for ODEs. Appl. Numer. Math. 42(1–3), 269–284 (2002)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Makino, K., Berz, M.: Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 5(1), 3–12 (1999)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Wu, J.L., Zhao, Y., Chen, S.: An improved interval analysis method for uncertain structures. Struct. Eng. Mech. 20(6), 713–726 (2005)CrossRefGoogle Scholar
  44. 44.
    Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Wu, J.L., Luo, Z., Zhang, Y.Q., Zhang, N., Chen, L.P.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95(7), 608–630 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Wang, Z., Tian, Q., Hu, H.: Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84(2), 527–548 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wu, J.L., Zhang, Y.Q., Chen, L.P., Luo, Z.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 37(6), 4578–4591 (2013)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Wu, J.L., Luo, Z., Zhang, N., Zhang, Y.Q.: A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials. Eng. Optim. 47(9), 1264–1288 (2014)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Wu, J.L., Luo, Z., Zhang, N., Zhang, Y.Q.: A new interval uncertain optimization method for structures using Chebyshev surrogate models. Comput. Struct. 146, 185–196 (2015)CrossRefGoogle Scholar
  50. 50.
    Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. Springer, Berlin (2012)Google Scholar
  51. 51.
    Jalón, J.G.D.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18(1), 15–33 (2007)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    García-Vallejo, D., Escalona, J.L., Mayo, J., Domínguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34(1–2), 75–94 (2003)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)MATHCrossRefGoogle Scholar
  54. 54.
    Sopanen, J., Mikkola, A.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)MATHCrossRefGoogle Scholar
  55. 55.
    Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 359–384 (2008)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Shen, Z., Li, P., Liu, C., Hu, G.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1019–1033 (2014)CrossRefGoogle Scholar
  57. 57.
    García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20(1), 1–28 (2008)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Shabana, A.A.: ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 229(1), 109–112 (2014)Google Scholar
  59. 59.
    Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10(1), 024504–024504-4 (2015)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlinear Dyn. 7(3), 636–647 (2011)Google Scholar
  61. 61.
    Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)CrossRefGoogle Scholar
  62. 62.
    Ambrósio, J.A.C.: Impact of rigid and flexible multibody systems: deformation description and contact models. Nato Asi. 103, 57–81 (2003)MATHGoogle Scholar
  63. 63.
    Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Syst. Dyn. 28(4), 369–393 (2012)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Yamashita, H., Matsutani, Y., Sugiyama, H.: Longitudinal tire dynamics model for transient braking analysis: ANCF-LuGre tire model. J. Comput. Nonlinear Dyn. 10(3), 031003 (2014)CrossRefGoogle Scholar
  65. 65.
    Yu, C., Yu, S., Chong, C.: Dynamic analysis of a planar slider–crank mechanism with clearance for a high speed and heavy load press system. Mech. Mach. Theory 98, 81–100 (2016)CrossRefGoogle Scholar
  66. 66.
    Wang, Q., Tian, Q., Hu. H.Y.: Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dyn. 83(4), 1919–1937 (2015)Google Scholar
  67. 67.
    Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and cylindrical shell elements of gradient deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903–1918 (2012)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Jeffery, J.: Numerical Analysis and Scientific Computation. Addison Wesley, Cambridge (2004)Google Scholar
  70. 70.
    Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2000)CrossRefGoogle Scholar
  71. 71.
    Pyragas, K.: Delayed feedback control of chaos. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364, 2309–2334 (2006)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Pyragas, K., Pyragas, V.: Using ergodicity of chaotic systems for improving the global properties of the delayed feedback control method. Phys. Rev. E. 80, 067201 (2009)CrossRefGoogle Scholar
  73. 73.
    Just, W., Reibold, E., Kacperski, K., Fronczak, P., Holyst, J.A., Benner, H.: Influence of stable Floquet exponents on time-delayed feedback control. Phys. Rev. E. 61, 5045–5056 (2000)CrossRefGoogle Scholar
  74. 74.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A. 170, 421–428 (1992)CrossRefGoogle Scholar
  75. 75.
    Socolar, J.E.S., Sukow, D.W., Gauthier, D.J.: Stabilizing unstable periodic orbits in fast dynamical systems. Phys. Rev. E. 50, 3245–3248 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Mechanical EngineeringUniversity of Minho Campus de AzuremGuimarãesPortugal

Personalised recommendations