Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever beams
- 608 Downloads
- 12 Citations
Abstract
This work addresses the large amplitude nonlinear vibratory behavior of a rotating cantilever beam, with applications to turbomachinery and turbopropeller blades. The aim of this work is twofold. Firstly, we investigate the effect of rotation speed on the beam nonlinear vibrations and especially on the hardening/softening behavior of its resonances and the appearance of jump phenomena at large amplitude. Secondly, we compare three models to simulate the vibrations. The first two are based on analytical models of the beam, one of them being original. Those two models are discretized on appropriate mode basis and solve by a numerical following path method. The last one is based on a finite-element discretization and integrated in time. The accuracy and the validity range of each model are exhibited and analyzed.
Keywords
Large rotation Nonlinear von Karman Biot strain Inextensible Continuation method Asymptotic numerical method Modal expansionNotes
Acknowledgments
The French company Safran Snecma and the French Ministry of Research are thanked for the financial support of this study, through the PhD grant of the second author. Émmanuel Cottanceau is also warmly thanked for the careful reading of the finite-element model details section.
References
- 1.Antman, S.S., Kenney, C.S.: Large buckled states of nonlinearly elastic rods under torsion, thrust, and gravity. Arch. Ration. Mech. Anal. 76(4), 289–338 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Apiwattanalunggarn, P., Shaw, S.W., Pierre, C., Jiang, D.: Finite-element-based nonlinear modal reduction of a rotating beam with large-amplitude motion. J. Vib. Control 9(3–4), 235–263 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Arquier, R., Karkar, S., Lazarus, A., Thomas, O., Vergez, C., Cochelin, B. : Manlab 2.0: an interactive path-following and bifurcation analysis software. Technical report, Laboratoire de Mécanique et d’Acoustique, CNRS, http://manlab.lma.cnrs-mrs.fr, (2005-2011)
- 4.Arvin, H., Bakhtiari-Nejad, F.: Non-linear modal analysis of a rotating beam. Int. J. Non-Linear Mech. 46(6), 877–897 (2011)CrossRefGoogle Scholar
- 5.Austin, F., Pan, H.H.: Planar dynamics of free rotating flexible beams with tip masses. Am. Inst. Aeronaut. Astronaut. J. 8, 726–733 (1970)CrossRefzbMATHGoogle Scholar
- 6.Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)zbMATHGoogle Scholar
- 7.Bauchau, O., Guernsey, D.: On the choice of appropriate bases for nonlinear dynamic modal analysis. J. Am. Helicopter Soc. 38(4), 28–36 (1993)CrossRefGoogle Scholar
- 8.Bauchau, O.A., Hong, C.H.: Finite element approach to rotor blade modeling. J. Am. Helicopter Soc. 32(1), 60–67 (1987)CrossRefGoogle Scholar
- 9.Bauchau, O.A., Hong, C.H.: Nonlinear response and stability analysis of beams using finite elements in time. AIAA J. 26(9), 1135–1142 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Bauer, H.F., Eidel, W.: Vibration of a rotating uniform beam, part ii: Orientation perpendicular to the axis of rotation. J. Sound Vib. 122, 357–375 (1988)CrossRefGoogle Scholar
- 11.Bazoune, A.: Survey on modal frequencies of centrifugally stiffened beams. Shock Vib. Dig. 37, 449–469 (2005)CrossRefGoogle Scholar
- 12.Bazoune, A., Khulief, Y.A.: Furthur results for modal characteristics of rotating tapered timoshenko beams. J. Sound Vib. 219(1), 157–174 (1999)CrossRefGoogle Scholar
- 13.Bekhoucha, F., Rechak, S., Duigou, L., Cadou, J.-M.: Nonlinear forced vibrations of rotating anisotropic beams. Nonlinear Dyn. 74(4), 1281–1296 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Boyce, W.E.: Effect of hub radius on the vibrations of a uniform bar. J. Appl. Mech. 23, 287–290 (1956)zbMATHGoogle Scholar
- 15.Cao, D.Q., Tucker, R.W.: Nonlinear dynamics of elastic rods using the cosserat theory: modelling and simulation. Int. J. Solids Struct. 45(2), 460–477 (2008)CrossRefzbMATHGoogle Scholar
- 16.Cochelin, B., Vergez, C.: A high order purely frequential harmonic balance formulation. J. Sound Vib. 324(1–2), 243–262 (2009)CrossRefGoogle Scholar
- 17.Crespo da Silva, M.R.M., Glynn, C.C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. equations of motion. J. Struct. Mech. 6, 437–448 (1978)CrossRefGoogle Scholar
- 18.Crespo da Silva, M.R.M., Glynn, C.C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. forced motions. J. Struct. Mech. 6, 449–461 (1978)CrossRefGoogle Scholar
- 19.Crespo Da Silva, M.R.M., Hodges, D.H.: Nonlinear flexure and torsion of rotating beams, with application to helicopter rotor blades—I. Formulation. Vertica 10(2), 151–169 (1986)Google Scholar
- 20.Cusumano, J.P., Moon, F.C.: Chaotic non-planar vibrations of the thin elastica, part 2: derivation and analysis of a low-dimensional model. J. Sound Vib. 179(2), 209–226 (1995)CrossRefGoogle Scholar
- 21.Danielson, D.A., Hodges, D.H.: Nonlinear beam kinematics by decomposition of the rotation tensor. J. Appl. Mech. 54(2), 258–262 (1987)CrossRefzbMATHGoogle Scholar
- 22.Das, S.K., Ray, P.C., Pohit, G.: Free vibration of a rotating beam with nonlinear spring and mass system. J. Sound Vib. 301, 165–188 (2007)CrossRefzbMATHGoogle Scholar
- 23.Dill, E.H.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44(1), 1–23 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Eringen, A.C.: On the non-linear vibration of elastic bars. Q. Appl. Math. 9, 361–369 (1952)MathSciNetzbMATHGoogle Scholar
- 25.Felippa, C.: Nonlinear Finite Element Methods, chapter 10: The TL Plane Beam Element: formulation. http://www.colorado.edu/engineering/CAS/courses.d/NFEM.d, (2012)
- 26.Géradin, M., Cardona, A.: Flexible Multibody Dynamics: a Finite Element Approach. Wiley, New York (2001)Google Scholar
- 27.Géradin, M., Rixen, D.: Mechanical Vibrations. Theory and Application to Structural Dynamics. Wiley, New York (1997)Google Scholar
- 28.Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008)CrossRefGoogle Scholar
- 29.Hamdan, M.N., Al-Bedoor, B.O.: Non-linear free vibration of a rotating flexible arm. J. Sound Vib. 242(5), 839–853 (2001)CrossRefzbMATHGoogle Scholar
- 30.Hodges, D.H.: Nonlinear beam kinematics for small strains and finite rotations. Vertica 11(3), 573–589 (1987)Google Scholar
- 31.Hodges, D.H.: Geometrically-exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA J. 41(6), 1131–1137 (2003)CrossRefGoogle Scholar
- 32.Hodges, D.H.: Nonlinear Composite Beam Theory. American Institute of Aeronautics and Astronautics, Reston (2006)CrossRefGoogle Scholar
- 33.Hsieh, S.-R., Shaw, S.W., Pierre, C.: Normal modes for large amplitude vibration of a cantilever beam. Int. J. Solids Struct. 31(14), 1981–2014 (1994)CrossRefzbMATHGoogle Scholar
- 34.Hutchinson, J.R.: Shear coefficients for timoshenko beam theory. J. Appl. Mech. 68(1), 87–92 (2001)CrossRefzbMATHGoogle Scholar
- 35.Irschik, H., Gerstmayr, J.: A continuum mechanics based derivation of reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight bernoulli-euler beams. Acta Mech. 206(1–2), 1–21 (2009)CrossRefzbMATHGoogle Scholar
- 36.Irschik, H., Gerstmayr, J.: A continuum-mechanics interpretation of reissner’s non-linear shear-deformable beam theory. Math. Comput. Model. Dyn. Syst. 17(1), 19–29 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 37.Jiang, D., Pierre, C., Shaw, S.W.: The construction of non-linear normal modes for systems with internal resonance. Int. J. Non-Linear Mech. 40(5), 729–746 (2005)CrossRefzbMATHGoogle Scholar
- 38.Jones, L.H.: The transverse vibration of a rotating beam with tip mass: the method of integral equations. Q. Appl. Math. 33, 193–203 (1975)zbMATHGoogle Scholar
- 39.Lacarbonara, W., Arvin, H., Bakhtiari-Nejad, F.: A geometrically exact approach to the overall dynamics of elastic rotating blades - part 2: flapping nonlinear normal modes. Nonlinear Dyn. 70(3), 2279–2301 (2012)MathSciNetCrossRefGoogle Scholar
- 40.Lacarbonara, W., Yabuno, H.: Refined models of elastic beams undergoing large in-plane motions: theory and experiment. Int. J. Solids Struct. 43, 5066–5084 (2006)CrossRefzbMATHGoogle Scholar
- 41.Lazarus, A., Miller, J.T., Reis, P.M.: Continuation of equilibria and stability of slender elastic rods using an asymptotic numerical method. J. Mech. Phys. Solids 61(8), 1712–1736 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 42.Lazarus, A., Thomas, O., Deü, J.-F.: Finite elements reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elem. Anal. Des. 49(1), 35–51 (2012)MathSciNetCrossRefGoogle Scholar
- 43.Lo, H., Goldberg, J.E., Bogdanoff, J.L.: Effect of small hub radius change on bending frequencies of a rotating beam. J. Appl. Mech. 27, 548–550 (1960)CrossRefzbMATHGoogle Scholar
- 44.Lo, H., Renbarger, J.L.: Bending Vibrations of a Rotating Beam. In First US National Congress of Applied Mechanics, Chicago, Illinois (1951)Google Scholar
- 45.Magnusson, A., Ristinmaa, M., Ljun, C.: Behaviour of the extensible elastica solution. Int. J. Solids Struct. 38(46–47), 8441–8457 (2001)CrossRefzbMATHGoogle Scholar
- 46.Marguerre, K. : Zur Theorie der Gekrümmten Platte Grosser Formänderung. In: Proceedings of the 5th International Congress for Applied Mechanics, pp. 93–101, (1938)Google Scholar
- 47.Mettler, E.: Zum problem der stabilität erzwungener schwingungen elastischer körper. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 31(8–9), 263–264 (1951)CrossRefzbMATHGoogle Scholar
- 48.Nayfeh, A.H.: Nonlinear transverse vibrations of beams with properties that vary along the length. J. Acoust. Soc. Am. 53(3), 766–770 (1973)CrossRefGoogle Scholar
- 49.Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)zbMATHGoogle Scholar
- 50.Nayfeh, A.H., Paï, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)CrossRefzbMATHGoogle Scholar
- 51.Nayfeh, A.H., Pai, P.F.: Non-linear non-planar parametric responses of an inextensional beam. Int. J. Non-Linear Mech. 24(2), 139–158 (1989)CrossRefzbMATHGoogle Scholar
- 52.Noijen, S.P.M., Mallon, N.J., Fey, R.H.B., Nijmeijer, H., Zhang, G.Q.: Periodic excitation of a buckled beam using a higher order semianalytic approach. Nonlinear Dyn. 50(1–2), 325–339 (2007)CrossRefzbMATHGoogle Scholar
- 53.Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)Google Scholar
- 54.Pai, P.F., Nayfeh, A.H.: Non-linear non-planar oscillations of a cantilever beam under lateral base excitations. Int. J. Non-Linear Mech. 25(5), 455–474 (1990)MathSciNetCrossRefGoogle Scholar
- 55.Pai, P.F., Palazotto, A.N.: Large-deformation analysis of flexible beams. Int. J. Solids Struct. 33(9), 1335–1353 (1996)CrossRefzbMATHGoogle Scholar
- 56.Palacios, R.: Nonlinear normal modes in an intrinsic theory of anisotropic beams. J. Sound Vib. 330(8), 1772–1792 (2011)CrossRefGoogle Scholar
- 57.Park, J.-H., Kim, J.-H.: Dynamic analysis of rotating curved beam with tip mass. Journal Sound Vib. 228, 1017–1034 (1999)CrossRefGoogle Scholar
- 58.Pesheck, E., Pierre, C., Shaw, S.W.: Modal reduction of a nonlinear rotating beam through nonlinear normal modes. J. Vib. Acoust. 124, 229–236 (2002)CrossRefGoogle Scholar
- 59.Reissner, E.: On one-dimensional finite strain beam theory: the plane problem. Z. Angew. Math. Phys. 23(5), 795–804 (1972)CrossRefzbMATHGoogle Scholar
- 60.Rosen, A.: Structural and dynamic behaviour of pre-twisted rods and beams. Appl. Mech. Rev. 44, 483–515 (1991)CrossRefGoogle Scholar
- 61.Sansour, C., Sansour, J., Wriggers, P.: A finite element approach to the chaotic motion of geometrically exact rods undergoing in-plane deformations. Nonlinear Dyn. 11(2), 189–212 (1996)MathSciNetCrossRefGoogle Scholar
- 62.Simo, J.C., Vu-Quoc, L.: On the dynamics of rods undergoing large motions - a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 63.Sinha, S.K.: Combined torsional-bending-axial dynamics of a twisted rotating cantilever timoshenko beam with contact-impact loads at the free end. J. Appl. Mech. 74, 505–522 (2007)CrossRefzbMATHGoogle Scholar
- 64.Sokolov, I., Krylov, S., Harari, I.: Electromechanical analysis of micro-beams based on planar finite-deformation theory. Finite Elem. Anal. Des. 49(1), 28–34 (2012)MathSciNetCrossRefGoogle Scholar
- 65.Stoykov, S., Ribeiro, P.: Vibration analysis of rotating 3d beams by the p-version finite element method. Finite Elem. Anal. Des. 65, 76–88 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 66.Tabaddor, M.: Influence of nonlinear boundary conditions on the single-mode response of a cantilever beam. Int. J. Solids Struct. 37, 4915–4931 (2000)CrossRefzbMATHGoogle Scholar
- 67.Thomas, O., Bilbao, S.: Geometrically non-linear flexural vibrations of plates: in-plane boundary conditions and some symmetry properties. J. Sound Vib. 315(3), 569–590 (2008)CrossRefGoogle Scholar
- 68.Thomas, O., Lazarus, A., Touzé, C.: A harmonic-based method for computing the stability of periodic oscillations of non-linear structural systems. In Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2010, Montreal, Canada, August 2010Google Scholar
- 69.Thomas, O., Touzé, C., Chaigne, A.: Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance. Int. J. Solids Struct. 42(11–12), 3339–3373 (2005)CrossRefzbMATHGoogle Scholar
- 70.Trindade, M.A., Sampaio, R.: Dynamics of beams undergoing large rotations accounting for arbitrary axial deformation. J. Guid. Control Dyn. 25(4), 634–643 (2002)CrossRefGoogle Scholar
- 71.Turhan, Ö., Bulut, G.: On nonlinear vibrations of a rotating beam. J. Sound Vib. 322, 314–335 (2009)CrossRefGoogle Scholar
- 72.von Karman, Th: Festigkeitsprobleme im maschinenbau. Encyklop adie der Mathematischen Wissenschaften 4(4), 311–385 (1910)zbMATHGoogle Scholar
- 73.Whitman, A.B., DeSilva, C.N.: A dynamical theory of elastic directed curves. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 20(2), 200–212 (1969)CrossRefzbMATHGoogle Scholar
- 74.Woinowsky-Krieger, S.: The effect of axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)MathSciNetzbMATHGoogle Scholar
- 75.Woodall, S.R.: On the large amplitude oscillations of a thin elastic beam. Int. J. Non-linear Mech. 1, 217–238 (1966)CrossRefzbMATHGoogle Scholar
- 76.Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)zbMATHGoogle Scholar
- 77.Wright, A.D., Smith, C.E., Thresher, R.W., Wang, J.L.C.: Vibration modes of centrifugally stiffened beams. J. Appl. Mech. 49(1), 197–202 (1982)CrossRefzbMATHGoogle Scholar
- 78.Wu, G., He, X., Pai, P.F.: Geometrically exact 3d beam element for arbitrary large rigid-elastic deformation analysis of aerospace structures. Finite Elem. Anal. Des. 47, 402–412 (2011)CrossRefGoogle Scholar