Advertisement

Nonlinear Dynamics

, Volume 86, Issue 2, pp 1263–1270 | Cite as

Hidden transient chaotic attractors of Rabinovich–Fabrikant system

  • Marius-F. DancaEmail author
Original Paper

Abstract

In Danca et al. (Int J Bifurc Chaos 26(02):1650038, 2016), it is shown that the Rabinovich–Fabrikant (RF) system admits self-excited and hidden chaotic attractors. In this paper, we further show that the RF system also admits a pair of symmetric transient hidden chaotic attractors. We reveal more extremely rich dynamics of this system, such as a new kind of “virtual saddles.”

Keywords

Hidden transient chaotic attractor Hidden attractor Self-excited attractor Rabinovich–Fabrikant system 

Notes

Acknowledgments

We thank the reviewers for their insightful comments and suggestions.

References

  1. 1.
    Danca, M.-F., Fec̆kan, M., Kuznetsov, N., Chen, G.: Looking more closely at the Rabinovich–Fabrikant system. Int. J. Bifurc. Chaos 26(02), 1650038 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Physica D 241(18), 1482–1486 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbits, and hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1485–1491 (2015)CrossRefGoogle Scholar
  4. 4.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits. Int. J. Bifurc. Chaos 23(1), 1330002 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dudkowski, D., Prasad, A., Kapitaniak, T.: Perpetual points and hidden attractors in dynamical systems. Phys. Lett. A 379(40–41), 2591–2596 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24(3), 1450034 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Shahzad, M., Pham, V.-T., Ahmad, M.A., Jafari, S., Hadaeghi, F.: Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1637–1652 (2015)CrossRefGoogle Scholar
  8. 8.
    Brezetskyi, S., Dudkowski, D., Kapitaniak, T.: Rare and hidden attractors in Van der Pol-Duffing oscillators. Eur. Phys. J. Spec. Top. 224(8), 1459–1467 (2015)CrossRefGoogle Scholar
  9. 9.
    Cafagna, D., Grassi, G.: Fractional-order systems without equilibria: the first example of hyperchaos and its application to synchronization. Chin.Phys. B 24(8), 080502 (2015)CrossRefGoogle Scholar
  10. 10.
    Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, C., Sprott, J.C.: Chaotic flows with a single nonquadratic term. Phys. Lett. A 378(3), 178–183 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, Z., Sun, W., Wei, Z., Zhang, S.: Dynamics and delayed feedback control for a 3D jerk system with hidden attractor. Nonlinear Dyn. 82(1), 577–588 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, M., Li, M., Yu, Q., Bao, B., Xu, Q., Wang, J.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81(1), 215–226 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R.: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377(9), 699–702 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurc. Chaos 23(11), 1350188 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, X., Chen, G.R.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71(3), 429–436 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13–23 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, X., Chen, G.R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. 17(3), 1264–1272 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sprott, J.C., Wang, X., Chen, G.R.: Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos 23, 1350093 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kaplan, J.L., Yorke, J.A.: Pre-turbulence: a regime observed in a fluid flow model of Lorenz. Commun. Math. Phys. 67(2), 93–108 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yorke, J.A., Yorke, E.D.: Metastable chaos: the transition to sustained chaotic oscillations in the Lorenz model. J. Stat. Phys. 21(3), 263–277 (1979)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pianigiani, G., Yorke, J.A.: Expanding maps on sets which are almost invariant. Decay and chaos. Trans. Am. Math. Soc. 252, 351–366 (1979)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Nusse, H.E., Yorke, J.A.: A procedure for finding numerical trajectories on chaotic saddles. Physica D 36(1–2), 137–156 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Grebogi, C., Ott, E., Yorke, J.A.: Fractal basin boundaries, long-lived chaotic transients, and unstable–unstable pair bifurcation. Phys. Rev. Lett. 50, 935–938 (1983)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181–200 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tél, T.: Transient chaos. In: Hao, B.-L., Feng, D.H., Yuan, J.M. (eds.) Directions in Chaos, vol. 3. World Scientific, Singapore (1991)Google Scholar
  28. 28.
    Grebogi, C., Ott, E., Yorke, J.A.: Chaotic attractors in crisis. Phys. Rev. Lett. 48, 1507 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kantz, H., Grassberger, P.: Repellers, semi-attractors, and long-lived chaotic transients. Physica D 17(1), 75–86 (1985)Google Scholar
  30. 30.
    Dhamala, M., Lai, Y.-C.: Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology. Phys. Rev. E 59, 1646–1655 (1999)CrossRefGoogle Scholar
  31. 31.
    Zhu, L., Raghu, A., Lai, Y.-C.: Experimental observation of superpersistent chaotic transients. Phys. Rev. Lett. 86(18), 4017–4020 (2001)CrossRefGoogle Scholar
  32. 32.
    Ahlers, G., Walden, R.W.: Turbulence near onset of convection. Phys. Rev. Lett. 44, 445–448 (1980)CrossRefGoogle Scholar
  33. 33.
    Chen, L., Aihara, K.: Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw 8(6), 915–930 (1995)CrossRefGoogle Scholar
  34. 34.
    Vadasz, P.: Analytical prediction of the transition to chaos in Lorenz equations. Appl. Math. Lett. 23(5), 503–507 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Astaf’ev, G.B., Koronovskiı, A.A., Hramov, A.E.: Behavior of dynamical systems in the regime of transient chaos. Tech. Phys. Lett. 29(11), 923–926 (2003)CrossRefGoogle Scholar
  36. 36.
    Dhamala, M., Lai, Y.-C., Kostelich, E.J.: Analysis of transient chaotic time series. Phys. Rev. E 64, 056207 (2001)CrossRefGoogle Scholar
  37. 37.
    Motter, A.E., Gruiz, M., Károlyi, G., Tél, T.: Doubly transient chaos: generic form of chaos in autonomous dissipative systems. Phys. Rev. Lett. 111, 194101 (2013)CrossRefGoogle Scholar
  38. 38.
    Danca, M.-F.: A multistep algorithm for ODEs. Dyn. Contin. Discr. Impul. Syst. B 13(6), 803–821 (2006)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Danca, M.-F., Kuznetsov, N., Chen, G.: Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system. arXiv:1511.07765v2
  40. 40.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375(23), 2230–2233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Prasad, A.: Existence of perpetual points in nonlinear dynamical systems and its applications. Int. J. Bifurc. Chaos 25, 1530005 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceAvram Iancu UniversityCluj-NapocaRomania
  2. 2.Romanian Institute for Science and TechnologyCluj-NapocaRomania

Personalised recommendations