Advertisement

Nonlinear Dynamics

, Volume 86, Issue 2, pp 725–740 | Cite as

ARM-embedded implementation of a video chaotic secure communication via WAN remote transmission with desirable security and frame rate

  • Ping Chen
  • Simin YuEmail author
  • Xiaoyang Zhang
  • Jianbin He
  • Zhuosheng Lin
  • Chengqing Li
  • Jinhu Lü
Invited Paper

Abstract

Existing H.264 codec-based video chaotic encryption schemes can be attributed to two classes: the original video data are encrypted with chaos before H.264 encoding; it is encrypted with chaos during H.264 encoding. The main disadvantage of the two classes of schemes is that the contradictory issue between desirable security and fast frame rate is not solved well. To cope with the problem, this paper presents a novel H.264 codec-based video chaotic encryption scheme, where the original video data are encrypted by a stream cipher and position scrambling with chaos after H.264 encoding. In particular, hardware H.264 encoding, multi-core multi-threading process, H.264 data format protection, and adaptive memory selection strategy are adopted to make the proposed scheme implemented successfully. Moreover, security of the chaotic stream cipher is enhanced by introducing a nonlinear nominal matrix. ARM-embedded hardware implementation results via WAN remote transmission demonstrated that the proposed scheme can provide a practical solution for H.264 codec-based video secure communications owning desirable security and fast frame rate.

Keywords

Chaotic encryption H.264 codec ARM H.264 data format protection Adaptive memory selection Multi-core multi-threading process 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 61172023, 61532020), the Science and Technology Planning Project of Guangzhou (no. 20151001036), and the Hunan Provincial Natural Science Foundation of China (no. 2015JJ1013).

References

  1. 1.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(8), 2129–2151 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Annovazzi-Lodi, V., Benedetti, M., Merlo, S., Norgia, M., Provinzano, B.: Optical chaos masking of video signals. IEEE Photon. Technol. Lett. 17(9), 1995–1997 (2005)CrossRefGoogle Scholar
  3. 3.
    Banerjee, S., Kurths, J.: Chaos and cryptography: a new dimension in secure communications. Eur. Phys. J. Spec. Top. 223(8), 1441–1445 (2014)CrossRefGoogle Scholar
  4. 4.
    Blaya, A.B., Lopez, V.J.: On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete Contin. Dyn. Syst. 32(2), 433–466 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chou, H.G., Chuang, C.F., Wang, W.J., Lin, J.C.: A fuzzy-model-based chaotic synchronization and its implementation on a secure communication system. IEEE Trans. Inf. Forens. Secur. 8(12), 2177–2185 (2013)CrossRefGoogle Scholar
  6. 6.
    Chung, Y., Lee, S., Jeon, T., Park, D.: Fast video encryption using the H.264 error propagation property for smart mobile devices. Sensors 15, 7953–7968 (2015)CrossRefGoogle Scholar
  7. 7.
    Enayatifar, R., Abdullah, A.H., Isnin, I.F.: Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt. Lasers Eng. 56, 83–93 (2014)CrossRefGoogle Scholar
  8. 8.
    Jiang, J., Liu, Y., Su, Z., Zhang, G., Xing, S.: An improved selective encryption for H.264 video based on intra prediction mode scrambling. J. Multimed. 5(5), 464–472 (2010)CrossRefGoogle Scholar
  9. 9.
    Kocarev, L.: Chaos-based cryptography: a brief overview. IEEE Circuits Syst. Mag. 1(3), 6–21 (2001)CrossRefGoogle Scholar
  10. 10.
    Kocarev, L., Lian, S.: Chaos-Based Cryptography Theory, Algorithms and Applications. Springer, Berlin, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kwok, H.S., Tang, W.K.S.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32, 1518–1529 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, C.: Cracking a hierarchical chaotic image encryption algorithm based on permutation. Signal Process. 118, 203–210 (2016)CrossRefGoogle Scholar
  13. 13.
    Li, C., Liu, Y., Xie, T., Chen, M.Z.Q.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, C., Lo, K.T.: Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. 91(4), 949–954 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lin, Z., Yu, S., Lu, J., Cai, S., Chen, G.: Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 25(7), 1203–1216 (2015)CrossRefGoogle Scholar
  16. 16.
    Lui, O.Y., Wong, K.W.: Chaos-based selective encryption for H.264/AVCO. J. Syst. Softw. 86(12), 3183–3192 (2013)Google Scholar
  17. 17.
    Massoudi, A., Lefebvre, F., De Vleeschouwer, C., Macq, B., Quisquater, J.J.: Overview on selective encryption of image and video, challenges and perspectives. EURASIP J. Inf. Secur. 2008, 1–18 (2008)CrossRefGoogle Scholar
  18. 18.
    Sadoudi, S., Tanougast, C., Azzaz, M.S., Dandache, A.: Design and FPGA implementation of a wireless hyperchaotic communication system for secure real-time image transmission. EURASIP J. Image Video Process. 43, 1–18 (2013)zbMATHGoogle Scholar
  19. 19.
    Shahid, Z., Puech, W.: Visual protection of HEVC video by selective encryption of CABAC binstrings. IEEE Trans. Multimed. 16(1), 24–36 (2014)CrossRefGoogle Scholar
  20. 20.
    Stütz, T., Uhl, A.: A survey of H.264 AVC/SVC encryption. IEEE Trans. Circuits Syst. Video Technol. 22(3), 325–339 (2012)CrossRefGoogle Scholar
  21. 21.
    Termonia, Y.: Kolmogorov entropy from a time series. Phys. Rev. A 29(3), 1612–1614 (1984)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, X., Zheng, N., Tian, L.: Hash key-based video encryption scheme for H.264/AVC. Signal Process. Image Commun. 25(6), 427–437 (2010)CrossRefGoogle Scholar
  23. 23.
    Zeng, B., Yeung, S.K.A., Zhu, S., Gabbouj, M.: Perceptual encryption of H.264 videos: embedding sign-flips into the integer-based transforms. IEEE Trans. Inf. Forensics Secur. 9(2), 309–320 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhu, C., Xu, S., Hu, Y., Sun, K.: Breaking a novel image encryption scheme based on brownian motion and pwlcm chaotic system. Nonlinear Dyn. 79(2), 1511–1518 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.College of AutomationGuangdong University of TechnologyGuangzhouChina
  2. 2.College of Information EngineeringXiangtan UniversityXiangtanChina
  3. 3.Academy of Mathematics and Systems SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations