Nonlinear Dynamics

, Volume 86, Issue 1, pp 695–710 | Cite as

On the control and stability of variable-order mechanical systems

  • J. Orosco
  • C. F. M. CoimbraEmail author
Original Paper


This work investigates the control and stability of nonlinear mechanics described by a system of variable-order (VO) differential equations. The VO behavior results from damping with order varying continuously on the bounded domain. A model-predictive method is presented for the development of a time-varying nominal control signal generating a desirable nominal state trajectory in the finite temporal horizon. A complimentary method is also presented for development of the time-varying control of deviations from the nominal trajectory. The latter method is extended into the time-invariant infinite temporal horizon. Simulation error dynamics of a reference configuration are compared over a range of damping coefficient values. Using a normal mode analysis, a fractional-order eigenvalue relation—valid in the infinite horizon—is derived for the dependence of the system stability on the damping coefficient. Simulations confirm the resulting analytical expression for perturbations of order much less than unity. It is shown that when deviations are larger, the fundamental stability characteristics of the controlled VO system carry dependence on the initial perturbation and that this feature is absent from a corresponding constant (integer or fractional) order system. It is then empirically demonstrated that the analytically obtained critical damping value accurately defines—for simulations over the entire temporal horizon—a boundary between rapidly stabilizing solutions and those which persistently oscillate for longtimes.


Fractional derivative Variable-order derivative Stability Nonlinear systems Pendulum dynamics Eigenvalue relation 


  1. 1.
    Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)CrossRefGoogle Scholar
  2. 2.
    Atkinson, K.E.: The numerical solution of Fredholm integral equations of the second kind. SIAM J. Numer. Anal. 4(3), 337–348 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14(2), 304–311 (1991)CrossRefGoogle Scholar
  4. 4.
    Balachandran, K., Park, J.Y., Anandhi, E.R.: Local controllability of quasilinear integrodifferential evolution systems in Banach spaces. J. Math. Anal. Appl. 258(1), 309–319 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bewley, T.R.: Numerical Renaissance: Simulation, Optimization, and Control. Renaissance Press, San Diego (2014)Google Scholar
  6. 6.
    Boubaker, O.: The inverted pendulum: a fundamental benchmark in control theory and robotics. In: Proceedings of the International Conference on Education and e-Learning Innovations, pp. 1–6 (2012)Google Scholar
  7. 7.
    Bugeja, M.: Non-linear swing-up and stabilizing control of an inverted pendulum system. In: Proceedings of the IEEE Region 8 EUROCON 2003. Computer as a Tool., vol. 2, pp. 437–441 (2003)Google Scholar
  8. 8.
    Calvet, J.P., Arkun, Y.: Stabilization of feedback linearized nonlinear processes under bounded perturbations. In: Proceedings of the American Control Conference (1989)Google Scholar
  9. 9.
    Calvet, J.P., Arkun, Y.: Design of \({P}\) and \({PI}\) stabilizing controllers for quasi-linear systems. Comput. Chem. Eng. 14(4–5), 415–426 (1990)CrossRefGoogle Scholar
  10. 10.
    Campbell, S.A., Crawford, S., Morris, K.: Friction and the inverted pendulum stabilization problem. J. Dyn. Sys. Meas. Control 130(5), 054502-1–054502-7 (2008)Google Scholar
  11. 11.
    Caputo, M.: Linear models of dissipation whose \({Q}\) is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal systems as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chen, Y., Liu, L., Li, X., Sun, Y.: Numerical solution for the variable order time fractional diffusion equation with bernstein polynomials. CMES-Comput. Model. Eng. 97(1), 81–100 (2014)MathSciNetGoogle Scholar
  15. 15.
    Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Coimbra, C.F.M., L’Espérance, D., Lambert, R.A., Trolinger, J.D., Rangel, R.H.: An experimental study on stationary history effects in high-frequency Stokes flows. J. Fluid Mech. 504, 353–363 (2004)zbMATHCrossRefGoogle Scholar
  17. 17.
    Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56(1–2), 145–157 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Diaz, G., Coimbra, C.F.M.: Dynamics and control of nonlinear variable order oscillators. In: Evans, T. (ed.) Nonlinear Dynamics, Chapter 6, pp. 129–144. InTech, Rijeka (2010)Google Scholar
  19. 19.
    Drazin, P.G.: Nonlinear Systems, 2nd edn. Cambridge University Press, Cambridge (1992)zbMATHCrossRefGoogle Scholar
  20. 20.
    Drazin, P.G., Reid, W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    Durand, S., Guerrero-Castellanos, J.F., Marchand, N., Guerrero-Sánchez, W.F.: Event-based control of the inverted pendulum: swing up and stabilization. J. Control Eng. Appl. Inform. 15(3), 96–104 (2013)Google Scholar
  22. 22.
    Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29(1), 201–233 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Hwang, C., Leu, J.F., Tsay, S.Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ingman, D., Suzdalnitsky, J., Zeifman, M.: Constitutive dynamic-order model for nonlinear contact phenomena. J. Appl. Mech. 67(2), 383–390 (1999)zbMATHCrossRefGoogle Scholar
  25. 25.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  26. 26.
    L’Espérance, D., Coimbra, C.F.M., Trolinger, J.D., Rangel, R.H.: Experimental verification of fractional history effects on the viscous dynamics of small spherical particles. Exp. Fluids 38(1), 112–116 (2005)CrossRefGoogle Scholar
  27. 27.
    Li, Y., Chen, Y.: Fractional order linear quadratic regulator. In: Proceedings of the IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, pp. 363–368 (2008)Google Scholar
  28. 28.
    Lorenzo, C.F., Hartley, T.T.: Initialization in fractional order systems. In: Proceedings of the European Control Conference, pp. 1471–1476 (2001)Google Scholar
  29. 29.
    Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1), 57–98 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)zbMATHCrossRefGoogle Scholar
  31. 31.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  32. 32.
    Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls. Advances in Industrial Control. Springer, London (2010)Google Scholar
  33. 33.
    Oldham, K.B., Spanier, J.: The replacement of Fick’s laws by a formulation involving semidifferentiation. J. Electroanal. Chem. Interfacial Electrochem. 26(2—-3), 331–341 (1970)CrossRefGoogle Scholar
  34. 34.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)zbMATHGoogle Scholar
  35. 35.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  36. 36.
    Podlubny, I.: Fractional-order systems and \({P}{I}^{\lambda }{D}^{\mu }\)-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Ramirez, L.E.S., Coimbra, C.F.M.: On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010, Article ID 846107 (2010)Google Scholar
  38. 38.
    Ross, B.: The development of fractional calculus 1695–1900. Hist. Math. 4(1), 75–89 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Ross, B., Samko, S.G.: Fractional integration operator of variable order in the Hölder spaces \({H}^{\lambda (x)}\). Int. J. Math. Math. Sci. 18(4), 777–788 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1(4), 277–300 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218(22), 10861–10870 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)zbMATHCrossRefGoogle Scholar
  43. 43.
    Sun, Z., Tsao, T.C.: Control of linear systems with nonlinear disturbance dynamics. In: Proceedings of the American Control Conference, vol. 4, pp. 3049–3054 (2001)Google Scholar
  44. 44.
    Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51(2), 294–298 (1984)zbMATHCrossRefGoogle Scholar
  45. 45.
    Wang, L., Ma, Y., Yang, Y.: Legendre polynomials method for solving a class of variable order fractional differential equation. CMES-Comput. Model. Eng. 101(2), 97–111 (2014)MathSciNetGoogle Scholar
  46. 46.
    Westerlund, S.: Dead matter has memory!. Phys. Scr. 43(2), 174–179 (1991)CrossRefGoogle Scholar
  47. 47.
    Yang, J.H., Shim, S.Y., Seo, J.H., Lee, Y.S.: Swing-up control for an inverted pendulum with restricted cart rail length. Int. J. Control Autom. 7(4), 674–680 (2009)CrossRefGoogle Scholar
  48. 48.
    Zhang, H., Liu, F., Zhuang, P., Turner, I., Anh, V.: Numerical analysis of a new space-time variable fractional order advection-dispersion equation. Appl. Math. Comput. 242, 541–550 (2014)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Zhang, H., Shen, S.: The numerical simulation of space–time variable fractional order diffusion equation. Numer. Math. Theor. Methods Appl. 6(4), 571–585 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace Engineering, Jacobs School of EngineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations