Nonlinear Dynamics

, Volume 85, Issue 4, pp 2705–2717 | Cite as

A new multi-anticipative car-following model with consideration of the desired following distance

  • Jianzhong Chen
  • Ronghui Liu
  • Dong Ngoduy
  • Zhongke Shi
Original Paper

Abstract

We propose in this paper an extension of the multi-anticipative optimal velocity car-following model to consider explicitly the desired following distance. The model on the following vehicle’s acceleration is formulated as a linear function of the optimal velocity and the desired distance, with reaction-time delay in elements. The linear stability condition of the model is derived. The results demonstrate that the stability of traffic flow is improved by introducing the desired following distance, increasing the time gap in the desired following distance or decreasing the reaction-time delay. The simulation results show that by taking into account the desired following distance as well as the optimal velocity, the multi-anticipative model allows longer reaction-time delay in achieving stable traffic flows.

Keywords

Multi-anticipative model Desired following distance Stability analysis Traffic flow 

List of symbols

Index

n

Index of vehicle

t

Time instant (s)

m

Number of preceding vehicles considered

Model variables

\(x_{n}(t)\)

Position of vehicle n at time t (m)

\(\Delta x_{n+j,n}(t)\)

Headway \(x_{n+j}(t)-x_{n}(t)\) (m) between the vehicle n and the leading vehicle \(n+j\)

\(v_{n}(t)\)

Velocity of vehicle n at time t (m/s)

\(\Delta x_{n}^\mathrm{des}(t)\)

Desired following distance (m)

Model parameters

\(\alpha \)

Sensitivity coefficient of a driver to the difference between the optimal velocities and the actual velocity (1/s)

\(\beta \)

Sensitivity coefficient of a driver to the distance (\(1/\mathrm {s}^{2}\))

\(t_\mathrm{d}\)

Reaction-time delay of drivers (s)

\(p_{j}\)

Weight of the optimal velocity function

\(q_{j}\)

Weight of the distance \(\Delta x_{n+j,n}(t-t_{d})/j\)

\(s_{0}\)

Stopping distance, including vehicle length (m)

T

Time gap (s)

a and b

Step function parameters for modelling \(\beta \)

\(s_\mathrm{c}\)

Critical distance (m) in the step function of \(\beta \)

\(V_{1}\) and \(V_{2}\)

Parameters of the optimal velocity function (m/s)

\(C_{1}\)

Parameter of the optimal velocity function (\(\mathrm {m}^{-1}\))

\(C_{2}\)

Parameter of the optimal velocity function

\(L_\mathrm{c}\)

Average length of vehicles (m)

References

  1. 1.
    Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. F 2, 181–196 (1999)CrossRefGoogle Scholar
  2. 2.
    Aghabayk, K., Sarvi, M., Young, W.: A state-of-the-art review of car-following models with particular considerations of heavy vehicles. Transp. Rev. 35, 82–105 (2015)CrossRefGoogle Scholar
  3. 3.
    Bonsall, P., Liu, R., Young, W.: Modelling safety-related driving behaviour-impact of parameter values. Transp. Res. A 39, 425–444 (2005)Google Scholar
  4. 4.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wang, J., Liu, R., Montgomery, F.O.: A car following model for motorway traffic. Transp. Res. Rec. 1934, 33–42 (2005)CrossRefGoogle Scholar
  6. 6.
    Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9, 545–567 (1961)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Oper. Res. 6, 165–184 (1958)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Helly, W.: Simulation of bottlenecks in single lane traffic flow. In: Proceedings of the symposium on theory of traffic flow, pp. 207–238 (1959)Google Scholar
  9. 9.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamics model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)CrossRefMATHGoogle Scholar
  10. 10.
    Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)CrossRefGoogle Scholar
  11. 11.
    Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001)CrossRefGoogle Scholar
  12. 12.
    Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70, 1397–1405 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76, 2017–2023 (2014)CrossRefGoogle Scholar
  14. 14.
    Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70, 1205–1211 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kang, Y.R., Sun, D.H., Yang, S.H.: A new car-following model considering driver’s individual anticipation behavior. Nonlinear Dyn. 82, 1293–1302 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nagatani, T.: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys. Rev. E 60, 6395–6401 (1999)CrossRefGoogle Scholar
  17. 17.
    Ge, H.X., Dai, S.Q., Dong, L.Y., Xue, Y.: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. Phys. Rev. E 70, 066134 (2004)CrossRefGoogle Scholar
  18. 18.
    Nagatani, T., Nakanishi, K., Emmerich, H.: Phase transition in a difference equation model of traffic flow. J. Phys. A 31, 5431–5438 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wilson, R.E., Berg, P., Hooper, S., Lunt, G.: Many-neighbour interaction and non-locality in traffic models. Eur. Phys. J. B 39, 397–408 (2004)CrossRefGoogle Scholar
  20. 20.
    Chen, J.Z., Shi, Z.K., Hu, Y.M.: Stabilization analysis of a multiple look-ahead model with driver reaction delays. Int. J. Mod. Phys. C 23, 1250048 (2012)CrossRefMATHGoogle Scholar
  21. 21.
    Yu, L., Shi, Z.K., Zhou, B.C.: Kink-antikink density wave of an extended car-following model in a cooperative driving system. Commun. Nonlinear Sci. Numer. Simul. 13, 2167–2176 (2008)CrossRefGoogle Scholar
  22. 22.
    Li, Z.P., Liu, Y.C.: Analysis of stability and density waves of traffic flow model in an ITS environment. Eur. Phys. J. B 53, 367–374 (2006)CrossRefMATHGoogle Scholar
  23. 23.
    Jin, Y.F., Xu, M., Gao, Z.Y.: KDV and Kink-antikink solitons in an extended car-following model. J. Comput. Nonlinear Dyn. 6, 011018 (2011)CrossRefGoogle Scholar
  24. 24.
    Xie, D.F., Gao, Z.Y., Zhao, X.M.: Stabilization of traffic flow based on the multiple information of preceding cars. Commun. Comput. Phys. 3, 899–912 (2008)MathSciNetGoogle Scholar
  25. 25.
    Peng, G.H., Sun, D.H.: A dynamical model of car-following with the consideration of themultiple information of preceding cars. Phys. Lett. A 374, 1694–1698 (2010)CrossRefMATHGoogle Scholar
  26. 26.
    Ngoduy, D.: Linear stability of a generalized multi-anticipative car following model with time delays. Commun. Nonlinear Sci. Numer. Simul. 22, 420–426 (2015)CrossRefGoogle Scholar
  27. 27.
    Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000)CrossRefMATHGoogle Scholar
  28. 28.
    Li, Y.F., Sun, D.H., Liu, W.N., Zhang, M., Zhao, M., Liao, X.Y., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66, 15–28 (2011)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Lenz, H., Wagner, C.K., Sollacher, R.: Multi-anticipative car-following model. Eur. Phys. J. B 7, 331–335 (1999)CrossRefGoogle Scholar
  30. 30.
    Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies and anticipation in microscopic traffic models. Phys. A 360, 71–88 (2006)CrossRefGoogle Scholar
  31. 31.
    Ossen, S., Hoogendoorn, S.P.: Multi-anticipation and heterogeneity in car-following: empirics and a first exploration of their implications. In: IEEE Intelligent Transportation Systems Conference, pp. 1615–1620 (2006)Google Scholar
  32. 32.
    Hoogendoorn, S., Ossen, S., Schreuder, M.: Empirics of multi-anticipative car-following behavior. Transp. Res. Rec. 1965, 112–120 (2006)CrossRefGoogle Scholar
  33. 33.
    Farhi, N., Haj-Salem, H., Lebacque, J.P.: Multi-anticipative piecewise-linear car-following model. Transp. Res. Rec. 2315, 100–109 (2012)CrossRefGoogle Scholar
  34. 34.
    Farhi, N.: Piecewise linear car-following modeling. Transp. Res. C 25, 100–112 (2012)CrossRefGoogle Scholar
  35. 35.
    Hu, Y.M., Ma, T.S., Chen, J.Z.: An extended multi-anticipative delay model of traffic flow. Commun. Nonlinear Sci. Numer. Simul. 19, 3128–3135 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Treiber, M., Kesting, A.: Traffic flow dynamics: data, models and simulation. Springer, Berlin (2013)CrossRefMATHGoogle Scholar
  37. 37.
    Addison, P.S., Low, D.J.: A novel nonlinear car-following model. Chaos 8, 791–799 (1998)CrossRefMATHGoogle Scholar
  38. 38.
    Davis, L.C.: Modifications of the optimal velocity traffic model to include delay due to driver reaction time. Phys. A 319, 557–567 (2003)CrossRefMATHGoogle Scholar
  39. 39.
    Orosz, G., Wilson, R.E., Krauskopf, B.: Global bifurcation investigation of an optimal velocity traffic model with driver reaction time. Phys. Rev. E 70, 026207 (2004)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Orosz, G., Stépán, G.: Subcritical Hopf bifurcations in a car-following model with reaction-time delay. Proc. R. Soc. A 462, 2643–2670 (2006)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Sipahi, R., Niculescu, S.I.: Stability of car following with human memory effects and automatic headway compensation. Philos. Trans. R. Soc. A 368, 4563–4583 (2010)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Kesting, A., Treiber, M.: How reaction time, update time, and adaptation time influence the stability of traffic flow. Comput. Aided Civil Infrastruct. Eng. 23, 125–137 (2008)CrossRefGoogle Scholar
  43. 43.
    Orosz, G., Moehlis, J., Bullo, F.: Robotic reactions: delay-induced patterns in autonomous vehicle systems. Phys. Rev. E 81, 025204(R) (2010)CrossRefGoogle Scholar
  44. 44.
    Ngoduy, D., Tampere, C.M.J.: Macroscopic effects of reaction time on traffic flow characteristics. Phys. Scr. 80, 025802–025809 (2009)CrossRefMATHGoogle Scholar
  45. 45.
    Kang, Y.R., Sun, D.H.: Lattice hydrodynamic traffic flow model with explicit drivers’ physical delay. Nonlinear Dyn. 71, 531–537 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Ngoduy, D.: Analytical studies on the instabilities of heterogeneous intelligent traffic flow. Commun. Nonlinear Sci. Numer. Simul. 18, 2699–2706 (2013)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Ngoduy, D.: Generalized macroscopic traffic model with time delay. Nonlinear Dyn. 77, 289–296 (2014)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Chen, J.Z., Shi, Z.K., Yu, L., Peng, Z.Y.: Nonlinear analysis of a new extended lattice model with consideration of multi-anticipation and driver reaction delays. J. Comput. Nonlinear Dyn. 9, 031005 (2014)CrossRefGoogle Scholar
  49. 49.
    Davoodi, N., Soheili, A.R., Hashemi, S.M.: A macro-model for traffic flow with consideration of driver’s reaction time and distance. Nonlinear Dyn. 82, 1–8 (2015)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Xing, J.: A parameter identification of a car following model. In: Steps Forward. Intelligent Transport Systems World Congress, pp. 1739–1745 (1995)Google Scholar
  51. 51.
    Van Winsum, W.: The human element in car following models. Transp. Res. F 2, 207–211 (1999)CrossRefGoogle Scholar
  52. 52.
    Herman, R., Potts, R.B.: Single lane traffic theory and experiment. In: Proceedings of the Symposium on the Theory of Traffic Flow, pp. 120–146 (1961)Google Scholar
  53. 53.
    Chow, T.S.: Operational analysis of a traffic dynamics problem. Oper. Res. 6, 165–184 (1958)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Liu, R., Li, X.: Stability analysis of a multi-phase car-following model. Phys. A 392, 2660–2671 (2013)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Wilson, R.E., Ward, J.A.: Car-following models: fifty years of linear stability analysis-a mathematical perspective. Transp. Plan. Technol. 34, 3–18 (2011)CrossRefGoogle Scholar
  56. 56.
    Treiber, M., Kanagaraj, V.: Comparing numerical integration schemes for time-continuous car-following models. Phys. A 419, 183–195 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jianzhong Chen
    • 1
    • 2
  • Ronghui Liu
    • 2
  • Dong Ngoduy
    • 2
  • Zhongke Shi
    • 1
  1. 1.College of AutomationNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Institute for Transport StudiesUniversity of LeedsLeedsUK

Personalised recommendations