Nonlinear Dynamics

, Volume 85, Issue 4, pp 2653–2663 | Cite as

Generating hyperchaotic multi-wing attractor in a 4D memristive circuit

  • Ling Zhou
  • Chunhua WangEmail author
  • Lili Zhou
Original Paper


It is very important to generate hyperchaotic attractor with more complicated dynamics for theoretical research and practical application. The paper proposes a novel method to generate hyperchaotic multi-wing attractor. By replacing the resistor in the circuit of modified Lü system with flux-controlled memristor respectively, this new memristive system can exhibit a hyperchaotic multi-wing attractor, and the values of two positive Lyapunov exponents are relatively large. The dynamical behaviors of the proposed system are analyzed by phase portrait, Lyapunov exponents, Poincaré maps, and bifurcation diagram. Moreover, the influences of memristor’s strength and position of replaced resistor are analyzed. To further probe the inherent features of the new memristive hyperchaotic system, the circuit implementation is carried out. The proposed method can be easily extended to the generalized Lorenz system family.


Hyperchaos Multi-wing attractor Memristor 



This work was supported by the National Natural Science Foundation of China (Nos. 61571185 and 61274020), the Open Fund Project of Key Laboratory in Hunan Universities (No. 15K027), and the Science and Technology Planned Project of YongZhou City.


  1. 1.
    Chen, Z., Yang, Y., Yuan, Z.: A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos Solitons Fractals 38(4), 1187–1196 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Wang, L.: 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dyn. 56(4), 453–462 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dadras, S., Momeni, H.R.: A novel three-dimensional autonomous chaotic system generating two-, three- and fourscroll attractors. Phys. Lett. A 373(40), 3637–3642 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Elwakil, A.S., Ozoguz, S., Kennedy, M.P.: A four-wing butterfly attractor from a fully autonomous system. Int. J. Bifurc. Chaos 13(10), 3093–3098 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Yu, S.M., Lü, J.H., Chen, G.R., Yu, X.H.: Generating grid multi-wing chaotic attractors by constructing heteroclinic loops into switching systems. IEEE Trans. Circuits Syst. II: Express Briefs 58(5), 314–318 (2011)CrossRefGoogle Scholar
  6. 6.
    Yu, S.M., Tang, W.K.S., Lü, J.H., Chen, G.R.: Generating 2n-wing attractors from Lorenz-like systems. Int. J. Circuit Theory Appl. 38(3), 243–258 (2010)Google Scholar
  7. 7.
    Tahir, F.R., Jafari, S., Volos, C., Wang, X.: A novel no-equilibrium chaotic system with multi-wing butterfly attractors. Int. J. Bifurc. Chaos 25(4), 1–11 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(3), 659–661 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rossler, E.: An equation for hyperchaos. Phys. Lett. A 71(2), 155–157 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grassi, G., Mascolo, S.: A system theory approach for designing cryptosystems based on hyperchaos. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(9), 1135–1138, (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Li, C.Q., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78, 1545–1551 (2014)CrossRefGoogle Scholar
  12. 12.
    Wong, K.W., Kwok, B.S.H., Law, W.S.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372, 2645–2652 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wu, X.J., Bai, C.X., Kan, H.B.: A new color image cryptosystem via hyperchaos synchronization. Commun. Nonlinear Sci. Numer. Simul. 19, 1884–1897 (2014)CrossRefGoogle Scholar
  14. 14.
    Lin, Z.S., Yu, S.M., Lü, J.H., Cai, S.T., Chen, G.R.: Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans. Circuits Syst Video Technol. 25(7), 1203–1215 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, X.Y., Zhang, H.L.: A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems. Nonlinear Dyn. 83, 333–346 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhang, G.D., Hu, J.H., Shen, Y.: New results on synchronization control of delayed memristive neural networks. Nonlinear Dyn. 81, 1167–1178 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, G.D., Shen, Y.: Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control. Neural Netw. 55, 1–10 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wu, X.J., Fu, Z.Y., Kurths, J.: A secure communication scheme based generalized function projective synchronization of a new 5D hyperchaotic system. Phys. Scr. 90(4), 45210–45221 (2015)CrossRefGoogle Scholar
  19. 19.
    Zunino, L., Rosso, O.A., Soriano, M.C.: Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE J. Sel. Top. Quantum Electron. 17(5), 1250–1257 (2011)CrossRefGoogle Scholar
  20. 20.
    Yu, B., Hu, G.S.: Constructing multi-wing hyperchaotic attractors. Int. J. Bifurc. Chaos 20(3), 727–734 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, C.X., Yu, S.M.: On constructing complex grid multi-wing hyperchaotic system: theoretical design and circuit implementation. Int. J. Circ. Theor. Appl. 41(3), 221–237 (2013)CrossRefGoogle Scholar
  22. 22.
    Li, Q.D., Zeng, H.Z., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79(4), 2295–2308 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ma, J., Chen, Z.Q., Wang, Z.L., Zhang, Q.: A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonlinear Dyn. (2015). doi: 10.1007/s11071-015-2067-4
  24. 24.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(15), 507–519 (1971)CrossRefGoogle Scholar
  25. 25.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  26. 26.
    Starzyk, J.A., Basawaraj, : Memristor crossbar architecture for synchronous neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 61(8), 2390–2401 (2014)Google Scholar
  27. 27.
    Rakkiyappan, R., Sivasamy, R., Li, X.D.: Synchronization of identical and nonidentical Memristor-based chaotic systems via active backstepping control technique. Circuits Syst. Signal Process. 34(3), 763–778 (2015)CrossRefGoogle Scholar
  28. 28.
    Bao, B.C., Jiang, P., Wu, H.G., Hu, F.W.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79(4), 2333–2343 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Bao, B.C., Hu, F.W., Liu, Z., Xu, J.P.: Mapping equivalent approach to analysis and realization of memristor-based dynamical circuit. Chin. Phys. B 23(7), 303–310 (2014)CrossRefGoogle Scholar
  30. 30.
    Borghettil, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristive’ switches enable ‘stateful’ logic operations via material implication. Nat. Lett. 464(7290), 873–876 (2010)CrossRefGoogle Scholar
  31. 31.
    Bao, B.C., Zou, X., Liu, Z., Hu, F.W.: Generalized memory element and chaotic memory system. Int. J. Bifurc. Chaos 23(8), 1350135 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(5), 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  33. 33.
    Iu, H.H.C., Yu, D.S., Fitch, A.L., Sreeram, V., Chen, H.: Controlling chaos in a memristor based circuit using a Twin-T notch filter. IEEE Trans. Circuits Syst. I Regul. Pap. 58(6), 1337–1344 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bao, B.C., Xu, J.P., Zhou, G.H., Ma, Z.H., Zou, L.: Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20(12), 1–7 (2011)CrossRefGoogle Scholar
  35. 35.
    Li, C.B., Sprott, J.C., Thio, W., Zhu, H.Q.: A new piecewise linear hyperchaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 61(12), 977–981 (2014)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.College of Computer Science and Electronic EngineeringHunan UniversityChangshaChina
  2. 2.Department of Electronic and Information EngineeringHunan University of Science and EngineeringYongzhouChina

Personalised recommendations