Nonlinear Dynamics

, Volume 85, Issue 3, pp 1547–1560 | Cite as

Analysis of global terrorism dynamics by means of entropy and state space portrait

  • António M. LopesEmail author
  • J. A. Tenreiro Machado
  • Maria Eugénia Mata
Original Paper


This paper studies the global terrorism dynamics over the period 1970–2014. Data about terrorist events are analyzed by means of several mathematical tools, namely fractal dimension, entropy, state space portrait and multidimensional scaling, that reflect the dynamics in time and space. In a first phase, we consider worldwide events and we unveil the space–time characteristics exhibited by the global terrorism statistics. In a second phase, we group the events into eight geographic regions, and we analyze terrorism dynamics in a regional perspective. Finally, in a third phase, we adopt a complementary analysis of global terrorism based on multidimensional scaling and clustering techniques. The proposed methodology reveals to support new directions for exploring terrorism data.


Dynamical systems Entropy Fractal dimension State space portrait Multidimensional scaling Terrorism 



The authors acknowledge the National Consortium for the Study of Terrorism and Responses to Terrorism (START) for the Global Terrorism Database (


  1. 1.
    Abadie, A.: Poverty, political freedom, and the roots of terrorism. Am. Econ. Rev. 95, 50–56 (2005)Google Scholar
  2. 2.
    Abadie, A., Gardeazabal, J.: The economic costs of conflict: a case study of the Basque Country. Am. Econ. Rev. 93(1), 113–132 (2003)CrossRefGoogle Scholar
  3. 3.
    Abe, S., Beck, C., Cohen, E.G.: Superstatistics, thermodynamics, and fluctuations. Phys. Rev. E 76(3), 031,102 (2007)CrossRefGoogle Scholar
  4. 4.
    Alex, P.S.: Frameworks for conceptualising terrorism. Terror. Political Violence 16(2), 197–221 (2004)CrossRefGoogle Scholar
  5. 5.
    Asgarani, S., Mirza, B.: Two-parameter entropies, \(s_{k, r}\), and their dualities. Phys. A Stat. Mech. Its Appl. 417, 185–192 (2015)CrossRefGoogle Scholar
  6. 6.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Models and Numerical Methods, vol. 3. World Scientific, Singapore (2012)zbMATHGoogle Scholar
  7. 7.
    Bassil, C.: The effect of terrorism on tourism demand in the Middle East. Peace Econ. Peace Sci. Public Policy 20(4), 669–684 (2014)CrossRefGoogle Scholar
  8. 8.
    Beck, C.: Generalised information and entropy measures in physics. Contemp. Phys. 50(4), 495–510 (2009)CrossRefGoogle Scholar
  9. 9.
    Berrebi, C., Klor, E.F.: The impact of terrorism on the defence industry. Economica 77(307), 518–543 (2010)Google Scholar
  10. 10.
    Berry, M.V.: Diffractals. J. Phys. A Math. Gen. 12(6), 781–797 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bhatia, P.: On certainty and generalized information measures. Int. J. Contemp. Math. Sci. 5(21), 1035–1043 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Blomberg, S.B., Hess, G.D.: From (no) butter to guns? Understanding the economic role in transnational terrorism. Underst. Econ. Role Trans. Terror. (2006)Google Scholar
  13. 13.
    Burgoon, B.: On welfare and terror social welfare policies and political-economic roots of terrorism. J. Confl. Resolut. 50(2), 176–203 (2006)CrossRefGoogle Scholar
  14. 14.
    Charles, A., Darné, O.: Large shocks and the September 11th terrorist attacks on international stock markets. Econ. Modell. 23(4), 683–698 (2006)CrossRefGoogle Scholar
  15. 15.
    Clauset, A., Woodard, R., et al.: Estimating the historical and future probabilities of large terrorist events. Ann. Appl. Stat. 7(4), 1838–1865 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Clauset, A., Young, M., Gleditsch, K.S.: On the frequency of severe terrorist events. J. Confl. Resolut. 51(1), 58–87 (2007)CrossRefGoogle Scholar
  17. 17.
    Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Hall/CRC, Boca Raton (2001)zbMATHGoogle Scholar
  18. 18.
    Lugovskyy, Cruz: J.: The economic determinants of terrorism. Int. J. Acad. Bus. World 9(1), 31–42 (2015)Google Scholar
  19. 19.
    Drakos, K.: Terrorism-induced structural shifts in financial risk: airline stocks in the aftermath of the September 11th terror attacks. Eur. J. Political Econ. 20(2), 435–446 (2004)Google Scholar
  20. 20.
    Esteban, M., Morales, B.: A summary on entropy statistics. Kybernetika-Praha 4(31), 337–346 (1995)MathSciNetGoogle Scholar
  21. 21.
    Fleckinger-Pelle, J., Lapidus, M.: Tambour fractal: vers une résolution de la conjecture de Weyl–Berry pour les valeurs propres du laplacien. Comptes rendus de l’Académie des sciences. Série 1, Mathématique 306(4), 171–175 (1988)Google Scholar
  22. 22.
    Goldstein, K.B.: Unemployment, inequality and terrorism: another look at the relationship between economics and terrorism. Undergrad. Econ. Rev. 1(1), 6 (2005)Google Scholar
  23. 23.
    Gupta, S., Clements, B., Bhattacharya, R., Chakravarti, S.: Fiscal consequences of armed conflict and terrorism in low-and middle-income countries. Eur. J. Political Econ. 20(2), 403–421 (2004)CrossRefGoogle Scholar
  24. 24.
    Hanel, R., Thurner, S.: A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions. Europhys. Lett. 93(2), 20,006 (2011)CrossRefGoogle Scholar
  25. 25.
    Ionescu, C.M.: The Human Respiratory System: An Analysis of the Interplay Between Anatomy, Structure, Breathing and Fractal Dynamics. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kaniadakis, G.: Maximum entropy principle and power-law tailed distributions. Eur. Phys. J. B Condens. Matter Complex Syst. 70(1), 3–13 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Khinchin, A.I.: Mathematical Foundations of Information Theory, vol. 434. Courier Dover Publications, Mineola (1957)zbMATHGoogle Scholar
  28. 28.
    Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science Limited, Amsterdam (2006)CrossRefzbMATHGoogle Scholar
  29. 29.
    Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kruskal, J., Wish, M.: Multidimensional Scaling. Sage Publications, Newbury Park (1978)CrossRefGoogle Scholar
  31. 31.
    Lopes, A.M., Machado, J.: Fractional order models of leaves. J. Vib. Control 20(7), 998–1008 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lopes, A.M., Machado, J., Pinto, C.M., Galhano, A.M.: Fractional dynamics and MDS visualization of earthquake phenomena. Comput. Math. Appl. 66(5), 647–658 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lopes, A.M., Machado, J.T.: Dynamic analysis of earthquake phenomena by means of pseudo phase plane. Nonlinear Dyn. 74(4), 1191–1202 (2013)CrossRefGoogle Scholar
  34. 34.
    Lopes, A.M., Machado, J.T.: Analysis of temperature time-series: embedding dynamics into the mds method. Commun. Nonlinear Sci. Numer. Simul. 19(4), 851–871 (2014)CrossRefGoogle Scholar
  35. 35.
    Lopes, A.M., Machado, J.T.: Integer and fractional-order entropy analysis of earthquake data series. Nonlinear Dyn. 84(1), 79–90 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lopes, A.M., Machado, J.T.: Modeling vegetable fractals by means of fractional-order equations. J. Vib. Control (2015). doi: 10.1177/1077546315581228
  37. 37.
    Luo, Y., Chen, Y.: Fractional Order Motion Controls. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  38. 38.
    Machado, J., Lopes, A., Duarte, F., Ortigueira, M., Rato, R.: Rhapsody in fractional. Fract. Calc. Appl. Anal. 17(4), 1188–1214 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Machado, J., Mata, M.E., Lopes, A.M.: Fractional state space analysis of economic systems. Entropy 17(8), 5402–5421 (2015)CrossRefGoogle Scholar
  40. 40.
    Machado, J.A.T., Lopes, A.M.: Analysis and visualization of seismic data using mutual information. Entropy 15(9), 3892–3909 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Machado, J.T.: Fractional order generalized information. Entropy 16(4), 2350–2361 (2014)CrossRefGoogle Scholar
  42. 42.
    Machado, J.T., Lopes, A.M.: The persistence of memory. Nonlinear Dyn. 79(1), 63–82 (2014)CrossRefGoogle Scholar
  43. 43.
    Machado, J.T., Mata, M.E.: Pseudo phase plane and fractional calculus modeling of western global economic downturn. Commun. Nonlinear Sci. Numer. Simul. 22(1), 396–406 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Mandelbrot, B.B.: How long is the coast of Britain? statistical self-similarity and fractional dimension. Science 156(3775), 636–638 (1967)CrossRefGoogle Scholar
  45. 45.
    Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 173. Macmillan, New York (1983)zbMATHGoogle Scholar
  46. 46.
    Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York (1993)zbMATHGoogle Scholar
  47. 47.
    Newman, M.E.: Power laws, pareto distributions and zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)CrossRefGoogle Scholar
  48. 48.
    Pape, R.A.: The strategic logic of suicide terrorism. Am. Political Sci. Rev. 97(03), 343–361 (2003)CrossRefGoogle Scholar
  49. 49.
    Pinto, C.M., Lopes, A.M., Machado, J.T.: A review of power laws in real life phenomena. Commun. Nonlinear Sci. Numer. Simul. 17(9), 3558–3578 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Pinto, C.M., Lopes, A.M., Machado, J.T.: Double power laws, fractals and self-similarity. Appl. Math. Modell. 38(15), 4019–4026 (2014)CrossRefGoogle Scholar
  51. 51.
    Polderman, J.W., Willems, J.C.: Introduction to Mathematical Systems Theory: A Behavioral Approach, vol. 26. Springer, Berlin (1998)zbMATHGoogle Scholar
  52. 52.
    Richardson, L.: What Terrorists Want: Understanding the Enemy, Containing the Threat. Random House Trade Paperbacks, New York City (2007)Google Scholar
  53. 53.
    Rose, A., Avetisyan, M., Chatterjee, S.: A framework for analyzing the economic tradeoffs between urban commerce and security against terrorism. Risk Anal. 34(8), 1554–1579 (2014)CrossRefGoogle Scholar
  54. 54.
    Rose, A., Oladosu, G., Liao, S.Y.: Regional economic impacts of terrorist attacks on the electric power system of Los Angeles: a computable general disequilibrium analysis. In: Second Annual Symposium of the DHS Center for Risk and Economic Analysis of Terrorism Events, USC, Los Angeles, CA, August. Citeseer (2005)Google Scholar
  55. 55.
    Rrnyi, A.: On measures of entropy and information. Fourth Berkeley Symp. Math. Stat. Probab. 1, 547–561 (1961)MathSciNetGoogle Scholar
  56. 56.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives. Theory and Applications, Gordon and Breach, Yverdon (1993)Google Scholar
  57. 57.
    Schroeder, M.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W.H. Freeman, New York (1991)zbMATHGoogle Scholar
  58. 58.
    Sharma, B.D., Taneja, I.J.: Entropy of type (\(\alpha \), \(\beta \)) and other generalized measures in information theory. Metrika 22(1), 205–215 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Shepard, R.: The analysis of proximities: Multidimensional scaling with an unknown distance function. Psychometrika 27(I and II), 219–246 and 219–246 (1962)Google Scholar
  60. 60.
    Silva, M.F., Machado, J., Lopes, A.: Fractional order control of a hexapod robot. Nonlinear Dyn. 38(1–4), 417–433 (2004)CrossRefzbMATHGoogle Scholar
  61. 61.
    Tenreiro Machado, J., Pinto, C., Lopes, A.M.: Power law and entropy analysis of catastrophic phenomena. Math. Probl. Eng. 2013, 10 (2013). doi: 10.1155/2013/562320
  62. 62.
    Torgerson, W.: Theory and Methods of Scaling. Wiley, New York (1958)Google Scholar
  63. 63.
    Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52(1–2), 479–487 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Ubriaco, M.R.: Entropies based on fractional calculus. Phys. Lett. A 373(30), 2516–2519 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec.Top. 222, 1827–1846 (2013)CrossRefGoogle Scholar
  66. 66.
    Wada, T., Suyari, H.: A two-parameter generalization of Shannon–Khinchin axioms and the uniqueness theorem. Phys. Lett. A 368(3), 199–205 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Weissman, S.H., Busch, K.G., Schouten, R.: Introduction to this issue: the evolution of terrorism from 1914 to 2014. Behav. Sci. Law 32(3), 259–262 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • António M. Lopes
    • 1
    Email author
  • J. A. Tenreiro Machado
    • 2
  • Maria Eugénia Mata
    • 3
  1. 1.UISPA–LAETA/INEGI, Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.Department of Electrical Engineering, Institute of EngineeringPolytechnic of PortoPortoPortugal
  3. 3.Faculdade de Economia, Nova SBEUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations