Nonlinear Dynamics

, Volume 85, Issue 3, pp 1479–1490 | Cite as

Model of electrical activity in a neuron under magnetic flow effect

  • Mi Lv
  • Chunni Wang
  • Guodong Ren
  • Jun Ma
  • Xinlin Song
Original Paper


The electric activities of neurons are dependent on the complex electrophysiological condition in neuronal system, and it indicates that the complex distribution of electromagnetic field could be detected in the neuronal system. According to the Maxwell electromagnetic induction theorem, the dynamical behavior in electric activity in each neuron can be changed due to the effect of internal bioelectricity of nervous system (e.g., fluctuation of ion concentration inside and outside of cell). As a result, internal fluctuation of electromagnetic field is established and the effect of magnetic flux across the membrane should be considered during the emergence of collective electrical activities and signals propagation among a large set of neurons. In this paper, the variable for magnetic flow is proposed to improve the previous Hindmarsh–Rose neuron model; thus, a four-variable neuron model is designed to describe the effect of electromagnetic induction on neuronal activities. Within the new neuron model, the effect of magnetic flow on membrane potential is described by imposing additive memristive current on the membrane variable, and the memristive current is dependent on the variation of magnetic flow. The dynamics of this modified model is discussed, and multiple modes of electric activities can be observed by changing the initial state, which indicates memory effect of neuronal system. Furthermore, a practical circuit is designed for this improved neuron model, and this model could be suitable for further investigation of electromagnetic radiation on biological neuronal system.


Electrical activity Magnetic flow Memristor  Electromagnetic induction Neuron 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 11265008 (MJ) and 11365014 (WCN).


  1. 1.
    Buschman, T.L., Denovellis, E.L., Diogo, C., et al.: Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76, 838–846 (2012)CrossRefGoogle Scholar
  2. 2.
    Wig, G.S., Schlaggar, B.L., Petersen, S.E.: Concepts and principles in the analysis of brain networks. Ann. N.Y. Acad. Sci. 1224, 126–146 (2011)CrossRefGoogle Scholar
  3. 3.
    Seely, J., Crotty, P.: Optimization of the leak conductance in the squid giant axon. Phys. Rev. E 82, 021906 (2010)CrossRefGoogle Scholar
  4. 4.
    Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., et al.: Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J. Biol. Phys. 35, 425–445 (2009)CrossRefGoogle Scholar
  5. 5.
    Volman, V., Bazhenov, M., Sejnowski, T.J.: Computational models of neuron–astrocyte interaction in epilepsy. Front. Comput. Neurosci. 6, 58 (2012)CrossRefGoogle Scholar
  6. 6.
    Volman, V., Perc, M., Bazhenov, M.: Gap junctions and epileptic seizures-two sides of the same coin? PLoS One 6, e20572 (2011)CrossRefGoogle Scholar
  7. 7.
    Ozer, M., Ekmekci, N.H.: Effect of channel noise on the time-course of recovery from inactivation of sodium channels. Phys. Lett. A 338, 150–154 (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    Barthélemy, M.: Spatial networks. Phys. Rep. 499, 1–101 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Herz, A.V.M., Gollisch, T., Machens, C.K., et al.: Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314, 80–85 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gerstner, W., Kistler, W.M.: Spiking Neuron Models Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRefGoogle Scholar
  12. 12.
    Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)CrossRefGoogle Scholar
  13. 13.
    Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)CrossRefGoogle Scholar
  14. 14.
    Ibarz, B., Casado, J.M., Sanjuán, M.A.F.: Map-based models in neuronal dynamics. Phys. Rep. 501, 1–74 (2011)CrossRefGoogle Scholar
  15. 15.
    Perc, M., Marhl, M.: Amplification of information transfer in excitable systems that reside in a steady state near a bifurcation point to complex oscillatory behavior. Phys. Rev. E 71, 026229 (2005)CrossRefGoogle Scholar
  16. 16.
    Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature (London) 296, 162–164 (1982)CrossRefGoogle Scholar
  17. 17.
    Gu, H.G., Pan, B.B., Chen, G.R.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78, 391–407 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Storace, M., Linaro, D., de Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewiselinear approximations. Chaos 18, 033128 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pinto, R.D., Varona, P., Volkovskii, A., et al.: Synchronous behavior of two coupled electronic neurons. Phys. Rev. E 62, 2644 (2000)CrossRefGoogle Scholar
  20. 20.
    Moujahid, A., d’Anjou, A., Torrealdea, F.J., et al.: Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons. Chaos Solitons Fractals 44, 929–933 (2011)CrossRefGoogle Scholar
  21. 21.
    Selverston, A., Rabinovich, M., Abarbanel, H.D., et al.: Reliable circuits for irregular neurons: a dynamical approach to understanding central pattern generators. J. Physiol. 94, 357 (2000)Google Scholar
  22. 22.
    Rech, P.C.: Dynamics in the parameter space of a neuron model. Chin. Phys. Lett. 29, 060506 (2012)CrossRefGoogle Scholar
  23. 23.
    Gu, H.G., Pan, B.B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81, 2107–2126 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Uzun, R., Ozer, M., Perc, M.: Can scale-freeness offset delayed signal detection in neuronal networks? EPL 105, 60002 (2014)CrossRefGoogle Scholar
  25. 25.
    Ozer, M., Uzuntarla, M., Perc, M., et al.: Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin–Huxley channels. J. Theor. Biol. 261, 83–92 (2009)CrossRefGoogle Scholar
  26. 26.
    Aggarwal, A., Kumar, M., Rawat, T.K., et al.: Optimal design of 2-D FIR filters with quadrantally symmetric properties using fractional derivative constraints. Circ. Syst. Signal Process. (2016). doi: 10.1007/s00034-016-0283-x Google Scholar
  27. 27.
    Kumar, M., Rawat, T.K.: Fractional order digital differentiator design based on power function and least-squares. Int. J. Electron. (2016). doi: 10.1080/00207217.2016.1138520 Google Scholar
  28. 28.
    Wang, S.T., Wang, W., Liu, F.: Propagation of firing rate in a feed-forward neuronal network. Phys. Rev. Lett. 96, 018103 (2006)CrossRefGoogle Scholar
  29. 29.
    Suffczynski, p, Kalitzina, S., Lopes Da Silva, F.H.: Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126, 467–484 (2004)CrossRefGoogle Scholar
  30. 30.
    Cullheim, S., Thams, S.: The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res. Rev. 55, 89–96 (2007)CrossRefGoogle Scholar
  31. 31.
    Wang, R., Zhang, Z.Z., Ma, J., et al.: Spectral properties of the temporal evolution of brain network structure. Chaos 25, 123112 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviors. Electron. Lett. 46, 228–230 (2010)CrossRefGoogle Scholar
  33. 33.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  34. 34.
    Li, Q.D., Zeng, H.Z., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)CrossRefGoogle Scholar
  36. 36.
    Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24, 128710 (2015)CrossRefGoogle Scholar
  37. 37.
    Song, X.L., Wang, C.N., Ma, J., et al.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)CrossRefGoogle Scholar
  38. 38.
    Qin, H.X., Ma, J., Jin, W.Y., et al.: Dynamics of electrical activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)CrossRefGoogle Scholar
  39. 39.
    Yılmaz, E., Baysal, V., Perc, M., et al.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci. China Technol. Sci. 59, 364–370 (2016)CrossRefGoogle Scholar
  40. 40.
    Qin, H.X., Ma, J., Wang, C.N., et al.: Autapse-induced target wave, spiral wave in regular network of neurons. Sci. China Phys. Mech. Astron. 57, 1918–1926 (2014)CrossRefGoogle Scholar
  41. 41.
    Ren, G.D., Wu, G., Ma, J.: Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Phys. Sin. 64, 058702 (2015). In ChineseGoogle Scholar
  42. 42.
    Ma, J., Chen, Z.Q., Wang, Z.L., et al.: A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonlinear Dyn. 81, 1275–1288 (2015)CrossRefGoogle Scholar
  43. 43.
    Chen, M., Li, M.Y., Yu, Q., et al.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81, 215–226 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Pei, J.S., Wright, J.P., Todd, M.D., et al.: Understanding memristors and memcapacitors in engineering mechanics applications. Nonlinear Dyn. 80, 457–489 (2015)CrossRefGoogle Scholar
  45. 45.
    Li, Q.D., Tang, S., Zeng, H.Z., et al.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78, 1087–1099 (2014)CrossRefzbMATHGoogle Scholar
  46. 46.
    Pham, V.T., Jafari, S., Vaidyanathan, S., et al.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2016)CrossRefGoogle Scholar
  47. 47.
    Wu, H.G., Bao, B.C., Liu, Z., et al.: Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2016)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Ma, J., Tang, J., Zhang, A.H., et al.: Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Sci. China Phys. Mech. Astron. 53, 672–679 (2010)CrossRefGoogle Scholar
  49. 49.
    Ma, J., Wu, Y., Wu, N.J., et al.: Detection of ordered wave in the networks of neurons with changeable connection. Sci. China Phys. Mech. Astron. 56, 952–959 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhysicsLanzhou University of TechnologyLanzhouChina

Personalised recommendations