Advertisement

Nonlinear Dynamics

, Volume 85, Issue 3, pp 1393–1403 | Cite as

Adaptive finite-time synchronization of a class of pinned and adjustable complex networks

  • Xiao-Zheng Jin
  • Yi-Gang He
  • Dan Wang
Original Paper

Abstract

This paper is concerned with the finite-time asymptotic synchronization problem of a class of dynamical complex networks with adjustable couplings. Pinning controllers are developed to guarantee that synchronization errors of pinned nodes converge to zero within finite-time. The effects of couplings in networks are further studied, and adaptive schemes for adjusting coupled strength are provided to ensure the finite-time synchronization of unpinned nodes. Through the Lyapunov function and adaptive schemes, some results indicating that control strategies and coupling adjustment laws can guarantee the asymptotic synchronization of pinned and unpinned nodes within finite-time respectively, are obtained. Simulation results are given to verify the effectiveness of the proposed method.

Keywords

Dynamical complex networks Finite-time synchronization Adaptive coupling adjustment Pinning control 

Notes

Acknowledgments

This work was supported in part by the Funds of National Science of China (Grant Nos. 61273155, 61473195, 61203152, 51577046), the National Natural Science Funds of China for Distinguished Young Scholar (Grant No. 50925727), the Key Grant Project of Chinese Ministry of Education (Grant No. 313018), and the Anhui Provincial Science and Technology Foundation of China (Grant No. 1301022036).

References

  1. 1.
    Wang, X.F.: Complex networks: topology, dynamics, and synchronization. Int. J. Bifurc. Chaos 5, 885–916 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arenas, A., Guilera, A.D., Kurths, J., Morenob, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dana, S.K., Roy, P.K., Kurths, J.: Complex Dynamics in Physiological Systems: From Heart to Brain. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Wang, Z., Wang, Y., Liu, Y.: Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays. IEEE Trans. Neural Netw. 20, 11–25 (2010)CrossRefGoogle Scholar
  5. 5.
    Li, Z., Chen, G.: Robust adaptive synchronization of uncertain dynamical networks. Phys. Lett. A 324, 166–178 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zhou, J., Lu, J.A., Lü, J.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Autom. Control 54, 652–656 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Azemi, A., Yaz, E.: Sliding-mode adaptive observer approach to chaotic synchronization. Trans. ASME 122, 758–765 (2000)Google Scholar
  8. 8.
    Park, J.H.: Synchronization of Genesio chaotic system via backstepping approach. Chaos Solitons Fractals 27, 1369–1375 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–233 (2007)CrossRefGoogle Scholar
  10. 10.
    Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50, 655–661 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duan, Z.S., Wang, J.Z., Chen, G.R., Huang, L.: Stability analysis and decentralised control of a class of complex dynamical networks. Automatica 44, 1028–1035 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Qin, J., Yu, C., Gao, H.: Coordination for linear multi-agent systems with dynamic interaction topology in the leader-following framework. IEEE Trans. Ind. Electron. 61, 2412–2422 (2014)CrossRefGoogle Scholar
  13. 13.
    Lu, R., Yu, W., Lü, J.: Synchronization on complex networks of networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 2110–2118 (2014)CrossRefGoogle Scholar
  14. 14.
    Yu, C., Qin, J., Gao, H.: Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control. Automatica 50, 2341–2349 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Qin, J., Gao, H., Yu, C.: On discrete-time convergence for general linear multi-agent systems under dynamic topology. IEEE Trans. Autom. Control 59, 1054–1059 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xu, Y., Lu, R., Peng, H., Xie, K., Xue, A.: Asynchronous dissipative state estimation for stochastic complex networks with quantized jumping coupling and uncertain measurements. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi: 10.1109/TNNLS.20152503772
  17. 17.
    Lee, T.H., Park, J.H., Wu, Z.-G., Lee, S.C., Lee, D.H.: Robust \(H_{\infty }\) decentralized dynamic control for synchronization of a complex dynamical network with randomly occurring uncertainties. Nonlinear Dyn. 70, 559–570 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, S.M., Choi, S.J., Ji, D.H., Park, J.H., Won, S.C.: Synchronization for chaotic Lur’e systems with sector restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59, 277–288 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Qin, J., Gao, H., Zheng, W.X.: Exponential synchronization of complex networks of linear system and nonlinear oscillators: a unified analysis. IEEE Trans. Neural Netw. Learn. Syst. 26, 510–521 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I 54, 1317–1326 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Song, Q., Cao, J.: On pinning synchronization of directed and undirected complex dynamical networks. IEEE Trans. Circuits Syst. I Regul. Pap. 57, 672–680 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhao, J., Lu, J.-A., Zhang, Q.: Pinning a complex delayed dynamical network to a homogenous trajectory. IEEE Trans. Circuits Syst. II Express Br. 56, 514–518 (2009)CrossRefGoogle Scholar
  24. 24.
    Guo, W., Austin, F., Chen, S., Sun, W.: Pinning synchronization of the complex networks with non-delayed and delayed coupling. Phys. Lett. A 373, 1565–1572 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yu, W., Chen, G., Wang, Z., Yang, W.: Distributed consensus filtering in sensor networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39, 1568–1577 (2009)CrossRefGoogle Scholar
  26. 26.
    Jin, X.Z., Yang, G.H.: Adaptive synchronization of a class of uncertain complex networks against network deterioration. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1396–1409 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, Z., Jiao, L., Lee, J.-J.: Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength. Phys. A 387, 1369–1380 (2008)CrossRefGoogle Scholar
  28. 28.
    Jin, X.Z., Che, W.W., Wang, D.: Active coupling and its circuitry designs of chaotic systems against deteriorated and delayed networks. Nonlinear Dyn. 70, 1867–1877 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zheng, S., Bi, Q., Cai, G.: Adaptive projective synchronization in complex networks with time-varying coupling delay. Phys. Lett. A 373, 1553–1559 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, H., Lu, J.A., Lü, J., Hill, D.J.: Structure identification of uncertain general complex dynamical networks with time delay. Automatica 45, 1799–1807 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Tang, Y.: Terminal sliding mode control for rigid robots. Automatica 34, 51–56 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Franceschelli, M., Pisano, A., Giua, A., Usai, E.: Finite-time consensus with disturbance rejection by discontinuous local interactions in directed graphs. IEEE Trans. Autom. Control 60, 1133–1138 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhao, Y., Duan, Z., Wen, G.: Finite-time consensus for second-order multi-agent systems with saturated control protocols. IET Control Theory Appl. 9, 312–319 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Lu, X., Lu, R., Chen, S., Lü, J.: Finite-time distributed tracking control for multi-agent systems with a virtual leader. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 352–362 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Chen, G., Lewis, F., Xie, L.: Finite-time distributed consensus via binary control protocols. Automatica 47, 1962–1968 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Guan, Z.-H., Sun, F.-L., Wang, Y.-W., Li, T.: Finite-time consensus for leader-following second-order multi-agent networks. IEEE Trans. Circuits Syst. I Regul. Pap. 59, 2646–2654 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Du, H., Cheng, Y., He, Y.: Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control. IEEE Trans. Circuits Syst. I Regul. Pap. 61, 1778–1788 (2014)CrossRefGoogle Scholar
  38. 38.
    Hui, Q.: Finite-time rendezvous algorithms for mobile autonomous agents. IEEE Trans. Autom. Control 56, 207–211 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45, 2605–2611 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Liu, Y., Geng, Z.: Finite-time formation control for linear multi-agent systems: a motion planning approach. Syst. Control Lett. 85, 54–60 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Xu, Y., Zhou, W., Fang, J., Xie, C., Tong, D.: Finite-time synchronization of the complex dynamical network with non-derivative and derivative coupling. Neurocomputing 173, 1356–1361 (2016)Google Scholar
  42. 42.
    Yang, X., Ho, D.W.C., Lu, J., Song, Q.: Finite-time cluster synchronization of T–S fuzzy complex networks with discontinuous subsystems and random coupling delays. IEEE Trans. Fuzzy Syst. 23, 2302–2316 (2015)CrossRefGoogle Scholar
  43. 43.
    Mei, J., Jiang, M., Wang, X., Han, J., Wang, S.: Finite-time synchronization of drive–response systems via periodically intermittent adaptive control. J. Frankl. Inst. 351, 2691–2710 (2014)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Liu, X., Su, H., Chen, M.Z.Q.: A switching approach to designing finite-time synchronization controllers of coupled neural networks. IEEE Trans. Neural Netw. Learn. Syst. 27, 471–482 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Liu, X., Yu, X., Xi, H.: Finite-time synchronization of neutral complex networks with Markovian switching based on pinning controller. Neurocomputing 153, 148–158 (2015)CrossRefGoogle Scholar
  46. 46.
    Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Electrical Engineering and AutomationHeFei University of TechnologyHeFeiPeople’s Republic of China
  2. 2.Key Laboratory of Manufacturing Industrial Integrated AutomationShenyang UniversityShenyangPeople’s Republic of China

Personalised recommendations