Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control

Abstract

Based on the synchronization of real-variable chaotic systems, the problem of synchronization between two complex-variable chaotic systems with unknown parameters is investigated via nonsingular terminal sliding mode control in a finite time. On the basic of the adaptive laws and finite-time stability theory, a nonsingular terminal sliding mode control is developed to guarantee the synchronization between two complex-variable chaotic systems in a given finite time. It is theoretically proved that the introduced sliding mode technique has finite-time convergence and stability in both reaching and sliding mode phases. Numerical simulation results are shown to verify the effectiveness and applicability of the finite-time synchronization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

  2. 2.

    Zhang, Q., Lu, J., Lü, J., Tse, C.: Adaptive feedback synchronization of a general complex dynamical network with delayed nodes. IEEE Trans. Circuits Syst. II Express Briefs 55(2), 183–187 (2008)

  3. 3.

    Karimi, H.R., Gao, H.: New delay-dependent exponential synchronization for uncertain neural networks with mixed time delays. IEEE Trans. Syst. Man Cybern. B 40(1), 173–185 (2010)

  4. 4.

    Vincent, U.E.: Synchronization of identical and non-identical 4-D chaotic systems using active control. Chaos Solitons Fractals 37(4), 1065–1075 (2008)

  5. 5.

    Yu, Y., Li, H.: Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear Ana. RWA 12(1), 388–393 (2011)

  6. 6.

    Dedieu, H., Ogorzalek, M.J.: Identifiability and identification of chaotic systems based on adaptive synchronization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 948–962 (1997)

  7. 7.

    Zhang, H., Xie, Y., Wang, Z., Zheng, C.: Adaptive synchronization between two different chaotic neural networks with time delay. IEEE Trans. Neural Netw. 18(6), 1841–1845 (2007)

  8. 8.

    Liu, X., Cao, J.: Exponential stability of anti-periodic solutions for neural networks with multiple discrete and distributed delays, IMechE, Part I. J. Syst. Control Eng. 223(3), 299–308 (2009)

  9. 9.

    Liu, X., Cao, J.: Complete periodic synchronization of delayed neural networks with discontinuous activations. Int. J. Bifurcat. Chaos 20(7), 2151–2164 (2010)

  10. 10.

    Sun, J., Shen, Y., Zhang, G., Xu, C., Cui, G.: Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dyn. 73(3), 1211–1222 (2013)

  11. 11.

    Sun, J., Shen, Y., Yin, Q., Xu, C.: Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 22, 1–11 (2013)

  12. 12.

    Sun, J., Yin, Q., Shen, Y.: Compound synchronization for four chaotic systems of integer order and fractional order. Europhys. Lett. 106, 40005 (2014)

  13. 13.

    Sun, J., Shen, Y.: Quasi-ideal memory system. IEEE Trans. Cybern. 45(7), 1353–1362 (2016)

  14. 14.

    Yang, T., Chua, L.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 976–988 (1997)

  15. 15.

    Zhang, H., Ma, T., Huang, G., Wang, Z.: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man Cybern. B 40(3), 831–844 (2010)

  16. 16.

    Sun, D.: Position synchronization of multiple motion axes with adaptive coupling control. Automatica 39(6), 997–1005 (2003)

  17. 17.

    Grosu, I., Banerjee, R., Roy, P.K., Dana, S.K.: Design of coupling for synchronization of chaotic oscillators. Phys. Rev. E 80(3), 016212 (2009)

  18. 18.

    Ghosh, D., Grosu, I., Dana, S.K.: Design of coupling for synchronization in time-delayed systems. Chaos 22(3), 033111 (2012)

  19. 19.

    Feki, M.: Sliding mode control and synchronization of chaotic systems with parametric uncertainties. Chaos Solitons Fractals 41(3), 1390–1400 (2009)

  20. 20.

    Liu, X., Su, H., Chen, M.Z.Q.: A switching approach to designing finite-time synchronization controllers of coupled neural networks. IEEE Trans. Neural Netw. Learn. Syst., In Press.doi:10.1109/TNNLS.2015.2448549

  21. 21.

    Liu, X., Lam, J., Yu, W., Chen, G.: Finite-time consensus of multiagent systems with a switching protocol. IEEE Trans. Neural Netw. Learn. Syst., In: Press. doi:10.1109/TNNLS.2015.2425933

  22. 22.

    Su, H., Chen, M.Z.Q., Wang, X.: Global coordinated tracking of multi-agent systems with disturbance uncertainties via bounded control inputs. Nonlinear Dyn. 82(4), 2059–2068 (2015)

  23. 23.

    Su, H., Chen, M.Z.Q.: Multi-agent containment with input saturation on switching topologies. IET Con. Theory Appl. 9(3), 399–409 (2015)

  24. 24.

    Konishi, K., Hirai, M., Kokame, H.: Sliding mode control for a class of chaotic systems. Phys. Lett. A 245(6), 511–517 (1998)

  25. 25.

    Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model 35(6), 3080–3091 (2011)

  26. 26.

    Peng, Y.F.: Robust intelligent sliding model control using recurrent cerebellar model articulation controller for uncertain nonlinear chaotic systems. Chaos Solitons Fractals 39(1), 150–167 (2009)

  27. 27.

    Jang, M.J., Chen, C.L., Chen, C.K.: Sliding mode control of hyperchaos in Rössler systems. Chaos Solitons Fractals 14(9), 1465–1476 (2002)

  28. 28.

    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

  29. 29.

    Yu, X.H., Man, Z.H.: Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl 49(2), 261–264 (2002)

  30. 30.

    Wang, H., Han, Z., Xie, Q., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2728–2733 (2009)

  31. 31.

    Mei, J., Jiang, M., Wang, B., Long, B.: Finite-time parameter identification and adaptive synchronization between two chaotic neural networks. J. Frankl. Inst. 350(6), 1617–1633 (2013)

  32. 32.

    Mei, J., Jiang, M., Wang, J.: Finite-time structure identification and synchronization of drive-response systems with uncertain parameter. Commun. Nonlinear Sci. Numer. Simul. 18(4), 999–1015 (2013)

  33. 33.

    Zhao, H., Li, L., Peng, H., Xiao, J., Yang, Y., Zheng, M.: Impulsive control for synchronization and parameters identification of uncertain multi-links complex network. Nonlinear Dyn. 83(3), 1437–1451 (2016)

  34. 34.

    Luo, C., Wang, X.: Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identification. J. Franklin Inst. 350(9), 2646–2663 (2011)

  35. 35.

    Wang, X., Zhao, H., Lin, X.: Module-phase synchronization in hyperchaotic complex Lorenz system after modified complex projection. Appl. Math. Comput. 232, 91–96 (2014)

  36. 36.

    Luo, C., Wang, X.: Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn. 71(1–2), 241–257 (2013)

  37. 37.

    Sun, J., Shen, Y., Zhang, X.: Modified projective and modified function projective synchronization of a class of real nonlinear systems and a class of complex nonlinear systems. Nonlinear Dyn. 78(3), 1755–1764 (2014)

  38. 38.

    Shen, J., Cao, J.: Finite-time synchronization of coupled neural networks via discontinuous controllers. Cognit. Neurodyn. 5(4), 373–385 (2011)

  39. 39.

    Sun, J., Shen, Y., Wang, X., Chen, J.: Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn. 76(1), 383–397 (2014)

Download references

Acknowledgments

The authors thank the editor and the anonymous reviewers for their resourceful and valuable comments and constructive suggestions. The work was supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 61134012), the National Natural Science Foundation of China (Grant Nos. 61472371, 61472372 and 61572446), China Postdoctoral Science Foundation funded project (Grant No. 2015M570641), Basic and Frontier Technology Research Program of Henan Province (Grant No. 162300410220), and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).

Author information

Correspondence to Junwei Sun or Yanfeng Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, Y., Wang, Y. et al. Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control. Nonlinear Dyn 85, 1105–1117 (2016). https://doi.org/10.1007/s11071-016-2747-8

Download citation

Keywords

  • Compound synchronization
  • Combination synchronization
  • Combination system
  • Mixed system